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Light Detection and Ranging (LIDAR) systems are able to measure the speed of incom-
ing wind before it interacts with a wind turbine rotor. These preview wind measurements
can be used in feedforward control systems designed to reduce turbine loads. However,
the degree to which such preview-based control techniques can reduce loads by reacting
to turbulence depends on how accurately the incoming wind �eld can be measured. Past
studies have assumed Taylor’s frozen turbulence hypothesis, which implies that turbulence
remains unchanged as it advects downwind at the mean wind speed. With Taylor’s hy-
pothesis applied, the only source of wind speed measurement error is distortion caused
by the LIDAR. This study introduces wind evolution, characterized by the longitudinal
coherence of the wind, to LIDAR measurement simulations to create a more realistic mea-
surement model. A simple model of wind evolution is applied to a frozen wind �eld used in
previous studies to investigate the e�ects of varying the intensity of wind evolution. Sim-
ulation results show the combined e�ects of LIDAR errors and wind evolution for realistic
turbine-mounted LIDAR measurement scenarios.

Nomenclature

a decay parameter for exponential coherence
al decrement parameter for transverse coherence (l 2 fu; v; wg)
bl o�set parameter for transverse coherence (l 2 fu; v; wg)
D longitudinal distance between two points or measurement preview distance
F focal distance
f frequency (Hz)
� LIDAR measurement angle o� of longitudinal direction
k wind velocity wavenumber (m�1)
� wavelength (m)
R range along LIDAR beam
r scan radius for spinning LIDAR scenario
ri;j distance between two points in the yz plane
U mean wind speed (m/s)
�ui;j average mean wind speed between two points in the yz plane
 azimuth angle in the rotor plane
2xy(f) Coherence between signals x and y
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Sxx(f) Power spectral density (PSD) of signal x
Sxy(f) Cross-power spectral density (CPSD) between signals x and y

I. Introduction

Wind speed measurements in front of a wind turbine can be used as part of feedforward or preview-based
controllers to help mitigate structural loads caused by turbulent wind conditions. Prior analyses have shown
that reductions in turbine loads can be achieved with knowledge of the incoming wind �eld.1{3 A block
diagram of such a control strategy is shown in Fig. 1. Upstream wind is measured, providing an estimate of
the wind speeds that will eventually reach the turbine after a delay time of D=U , where D is the preview
distance between the rotor and the measurement location and U is the mean wind speed. In reality, the
turbulent structures in the wind will evolve between the time they are measured and when they reach the
turbine, causing errors in the preview wind measurements.4 Since wind evolution is due to physical properties
of the atmosphere that can only be estimated, it is represented as part of the \plant" of the control system
architecture. Wind evolution and LIDAR blocks are shown as part of the control system because their known
and estimated e�ects will have an impact on how the controller is designed.

Figure 1. A block diagram illustrating how LIDAR is used in a preview based combined feedforward/feedback
control scenario. The wind evolution block represents the coherence loss between wind at the measurement
location and the wind encountered by the rotor after a delay time of D=U . The distance D is the distance
upwind of the rotor where the measurement is taken and U is the mean wind speed.

Previous work combining preview measurement-based control systems and LIDAR models5,6 assumed
the validity of Taylor’s frozen turbulence hypothesis, which claims that turbulent eddies remain unchanged
while advecting with the average wind velocity. In this paper we combine our existing model7 of LIDAR
measurements with a model of wind evolution to study the degree to which wind inow can be accurately
measured and the scenarios that provide the best measurements.

In addition to wind evolution, another source of wind distortion exists, which is caused by the induction
zone of the turbine. The induction zone has the e�ect of slowing down the mean velocity of the wind near
the rotor and altering the turbulence characteristics.8 The important topic of wind inow distortion is an
area of future research and is not addressed in this paper, where we consider only the e�ects of freestream
wind evolution.

Wind evolution is described here by the coherence between wind speeds at two points separated longi-
tudinally (in the mean wind direction) in the ow. Taylor’s hypothesis in frozen wind �elds is equivalent to
assuming a coherence function of 1 at all frequencies for all purely longitudinal separations. Wind speeds
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at two locations separated longitudinally would simply be delayed versions of each other, with a delay time
of D=U . Introducing wind evolution to a frozen wind �eld is equivalent to applying a coherence function to
the wind at locations separated longitudinally in addition to the transverse coherence (perpendicular to the
mean wind direction) already provided by most wind models.

In this paper we investigate LIDAR measurement quality for realistic LIDAR scanning scenarios in
evolving wind �elds. A frozen, or non-evolving, wind �eld generated using the National Renewable Energy
Laboratory’s (NREL’s) TurbSim9 code is coupled with a simple longitudinal coherence model to create
an evolving wind �eld. The longitudinal coherence model can be adjusted to simulate varying degrees of
wind evolution. Using this wind �eld, we analyze LIDAR measurement quality for di�erent measurement
geometries by calculating the coherence between the measured wind and the evolved wind that reaches the
turbine rotor plane. Instead of directly simulating LIDAR measurements in four-dimensional wind �elds, we
use the spectra of the wind and the transverse and longitudinal coherence functions to calculate the overall
measurement coherence.

A previous study by the authors7 examined the e�ects of LIDAR on measurement error for realistic
scenarios involving the National Renewable Energy Laboratory’s (NREL’s) 5-MW wind turbine model10

with frozen wind �elds generated by TurbSim, including the wind �eld that is coupled with a model of wind
evolution in this paper. Emphasis was placed on a hub-mounted LIDAR scenario where the LIDAR scanned
a circle of wind in front of the rotor. We found that for a continuous-wave (CW) LIDAR model, there is an
optimal preview distance for each scan radius where the minimum measurement error is achieved (see Fig. 2
for a depiction of the preview distance D and scan radius r). For a scan radius of 75% blade span (47.25 m
for the 5-MW model), which is a radius of particular interest due to maximum power capture,1{3 optimal
preview distances are near 150 meters. In this paper, we provide more realistic acheivable measurement
errors and optimal preview distances for the same measurement scenarios, with wind evolution incorporated.

This paper is organized as follows. In Section II, we present the principal equation used in our CW
LIDAR model, called the \range weighting function," as well as the process through which the longitudinal
component of wind speed is estimated from a line-of-sight measurement. The ways that range weighting and
measurement geometry cause measurement errors are discussed here. Results from a realistic hub-mounted
LIDAR measurement simulation are provided in Section II-C, revealing the performance that can be expected
in the absence of wind evolution. An introduction to coherence and an explanation of how a wind �eld can
be described using coherence functions is provided in Section III. In Section IV, we discuss the frozen wind
�eld generated using the Great Plains-Low Level Jet model in TurbSim. The simple longitudinal coherence
model used to introduce wind evolution to the frozen TurbSim wind �eld is described next. In Section V, we
derive the calculations used to determine the coherence between a LIDAR wind speed measurement and the
wind that actually reaches the turbine rotor. Section VI includes results for measurement coherence using
the calculations derived in Section V as functions of scan radius and preview distance. Finally, Section VII
concludes the paper with a discussion of the coherence model and simulation results, and areas of future
research.

II. LIDAR Measurements

The analysis of wind speed measurement examined here uses the coordinate system shown in Fig. 2. The
ground referenced x, y, and z axes are de�ned such that -z is pointing in the direction of gravity and x is
nominally pointing in the downwind direction. The wind speed vector is de�ned by u, v, and w components,
where u is the streamwise component. Nominally, the u, v, and w axes are aligned with the x, y, and z axes,
respectively, since the mean wind direction of the wind �elds is in the x direction. The 5-MW wind turbine
model, which our measurement geometry is based on, has a hub height of 90 meters and a rotor diameter of
126 meters.

The LIDAR measurement model we have created introduces two imperfections to wind speed measure-
ments in frozen wind �elds. Range weighting is the e�ect inherent to CW and pulsed LIDAR that acts
as a spatial �lter along the laser beam causing wind speeds at locations other than the focal distance to
contribute to the measured value. The other primary source of error in wind speed measurements is due
to estimating the u component of the wind velocity vector given a single line-of-sight measurement. This
estimation problem is sometimes called the \cyclops dilemma." Control systems utilizing preview wind
speed measurements primarily focus on the component of the wind that is perpendicular to the rotor plane,
nominally the u component. We are assuming that the rotor plane is always perpendicular to the x axis.
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Figure 2. Coordinate system and measurement variables used. The LIDAR is assumed to be mounted in
the wind turbine hub at (xh; yh; zh) = (0; 0; 0). The variable D represents the distance upwind, or in the
longitudinal direction between the LIDAR and the measurement point. � is the angle o� of the longitudinal
wind direction that the LIDAR is pointing. r is the radial distance from the longitudinal direction upwind of
the LIDAR to the measurement point in the yz plane. In this �gure, r is the radius of the scan pattern of a
LIDAR measuring a circle upwind of the rotor. The dots represent where measurements would be taken for
a LIDAR with a 50 Hz sampling rate scanning at 60 RPM. This scenario will be discussed throughout the
paper.  is the azimuth angle of a LIDAR measurement in the yz plane. Point j indicates where a wind speed
measurement is taken to estimate the wind that reaches point i after a delay time of D=U .

Therefore, our LIDAR measurements estimate the component of wind aligned with the x axis, which will
be treated as equivalent to the u component for the rest of the paper. When the LIDAR is staring in the
x direction, there will be no geometrical measurement errors because the v and w components do not con-
tribute to the detected radial velocity. If the laser is instead pointing in a direction other than parallel to the
x axis, unknown v and w components contribute to the measurement and an estimate of the u component
must be formed. This latter source of error is referred to as \directional bias" in this paper.

A. Range Weighting

Continuous-wave LIDAR determines the line-of-sight wind speed at a speci�c location by focusing the laser
beam at that position in space. Rather than only detecting the wind speed at the intended point, a focal
distance F away from the LIDAR, wind speed values along the entire laser beam are averaged according
to what is called the \range weighting function," W (F;R), to yield the detected value. The general e�ect
of range weighting is the low-pass �ltering of the true wind speed. As focal length increases, more high
frequency wind information is lost in the measurement. The line-of-sight wind speed measurement due to
range weighting at a focal distance F is given by

u0LOS(F ) =

Z 1
�1

uLOS(R)W (F;R)dR (1)

4 of 19

American Institute of Aeronautics and Astronautics



where uLOS(R) is the line-of-sight velocity at a range R along the laser beam.11 The range weighting function
for a focal distance F is given by

W (F;R) =
KN

R2 + (1� R
F )2R2

R

(2)

where RR is the Rayleigh range and KN is a normalizing constant so that the entire range weighting
function integrates to 1. For the commercially available ZephIR Doppler LIDAR system modeled here,12

RR is approximately 1,570 meters.
The other leading technology for LIDAR wind speed measurements is pulsed LIDAR. Although pulsed

LIDAR systems do not rely on focusing a laser at the range of interest as CW systems do, their spatial
averaging can be similarly described by a range weighting function. Pulsed LIDARs emit a laser pulse and
integrate the backscattered light as the pulse travels through several \range gates." One drawback to using
pulsed technology is that more time is required to integrate enough photons to provide a useful velocity
estimate. In the remaining sections of this paper, we focus on CW LIDAR for the measurement analyses.

Figure 3 (a) shows the normalized range weighting functions for the CW model at several focal distances
and the �xed weighting function for a pulsed model based on the Leosphere Windcube.12 A previous
analysis7 has shown that the pulsed LIDAR causes roughly the same amount of measurement error as the
CW LIDAR focused at 135 meters. The corresponding frequency responses of the weighting functions in
terms of wavenumber k are shown in Fig. 3 (b) where the low-pass �lter behavior can be seen.

Figure 3. (a) Normalized range weighting functions, W (F;R), for the ZephIR continuous-wave LIDAR at a
variety of focal distances, F , and the �xed range weighting function for the Windcube pulsed LIDAR. (b)
Frequency responses of the normalized range weighting �lters for a variety of focal distances along with the
-3 dB bandwidths of the �lters.
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B. Directional Bias

Since a single LIDAR measurement only provides a line-of-sight velocity, an estimate of the u component of
the wind is formed by assuming v = w = 0 because ideally u� v; w. The detected radial velocity when the
LIDAR is aimed at an angle � o� of the x direction is given by7

uLOS =
p
u2 + v2 + w2 cos� (3)

where � is the angle between the wind vector and the LIDAR direction. Under the assumption that v = w = 0
(� = �), the estimate of u is

û =
uLOS
cos �

: (4)

When the LIDAR is pointing nearly along the x direction, � is small and errors due to directional bias are
low since the measured radial velocity will be dominated by the u component of wind speed. As � increases,
the radial velocity measured by the LIDAR will contain more contributions from the v and w components,
causing higher error. An analysis of directional bias errors7 has shown that for a variable u velocity and
a varying transverse wind speed component with magnitude

p
v2 + w2 and uniformly distributed random

direction in the yz plane, the RMS measurement error is

�err =
�RMS tan �p

2
(5)

where �RMS is the RMS value of the transverse wind speed magnitude, or
p
v2 + w2.

C. LIDAR Performance in Frozen Wind Fields

Any u component estimate based on a LIDAR measurement in a frozen wind �eld will contain errors from
both range weighting and directional bias as long as the measurement angle is non-zero. A previous study7

examined measurement errors for a hub-mounted LIDAR scanning a circle of wind with radius r in front of
the turbine as a function of preview distance D (see Fig. 2). This scenario is motivated by the need for only
one LIDAR, simplicity of implementation, and successful �eld testing.13 For short preview distances D, the
measurement angles � tend to be very large, causing large directional bias errors proportional to tan �, as
shown in equation 5. However, for large preview distances with smaller values of �, range weighting from a
CW LIDAR causes errors to be high. In the absence of wind evolution, it was found that for a CW LIDAR,
there is an optimal preview distance for each scan radius r where the combined e�ects from range weighting
and directional bias lead to a minimum achievable RMS error.

A summary of the error vs. preview distance study is provided in Fig. 4 for r = 50%, 75%, and 100%
blade span for the 5-MW model turbine (31.5, 47.25, and 63 meters, respectively). Results are shown for the
CW and pulsed models using an unstable Great Plains-Low Level Jet wind condition, described in Section
IV in Table 1. For CW LIDAR, the minimum-error preview distance is roughly 115 meters for r = 50%
blade span, just under 150 meters for r = 75% blade span, and over 200 meters for r = 100% blade span.
Note that for pulsed LIDAR there is no minimum-error preview distance in the absence of wind evolution
because the range weighting function remains the same as preview distance increases. A goal of the research
presented in this paper is to provide more accurate error vs. preview distance curves with the e�ects of wind
evolution, described by longitudinal coherence loss, discussed in the next section, introduced.

III. Coherence in Wind Fields

A. Coherence

The degree to which wind speeds at any two points in a wind �eld are correlated is given by a coherence
function. Coherence will vary depending on the spatial separation of the two points of interest. Wind
�elds used in a previous study of LIDAR performance7 included coherence between wind speeds separated
in the transverse direction, or the direction perpendicular to the wind direction. However, using Taylor’s
hypothesis, wind speeds at points separated in the longitudinal, or mean wind direction are always perfectly
correlated. In this section, we describe the coherence between wind speeds at any two points in a wind �eld
with wind evolution included. Magnitude-squared coherence, the de�nition used in this paper is a function
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Figure 4. RMS measurement error as a function of preview distance for the 5-MW turbine model in a wind
�eld generated using TurbSim with parameters given in Table 1. Results are shown for CW and Pulsed
LIDARs scanning at radii of 50%, 75%, and 100% blade span (blade span for the 5-MW turbine is 63 meters).

of frequency, where a value of 1 indicates that wind is perfectly correlated at the two locations and a value of
0 indicates that wind is completely uncorrelated at the two locations. In addition to magnitude, the phase
information for wind at the two locations can be used to assess the degree of wind evolution. Under Taylor’s
frozen turbulence hypothesis, the coherence magnitude would be 1 for all frequencies and the phase would be
2�D=� for two points longitudinally separated by a distance D, where � is the wavelength of the turbulent
eddies in the ow at the frequency f given by the relationship � = U=f .

Magnitude-squared coherence, often notated as 2, is de�ned as

2xy =
jSxyj2

SxxSyy
(6)

where Sxy is the cross-power spectral density (CPSD) between signals x and y and Sxx is the power spectral
density (PSD) of signal x. CPSD is given by

Sxy = FfRxy(�)g (7)

where Ffg indicates the Fourier transform, and the cross-correlation function Rxy(�) is de�ned as

Rxy(�) =

Z 1
�1

x(t)y�(t+ �)dt: (8)

The phase associated with coherence is given by

�xy(f) = \(Sxy): (9)

B. Correlation between Points in a Wind Field

In order to describe the correlation between all points in a wind �eld with three spatial dimensions, a
coherence function must exist for each pair of points. For a wind �eld with two spatial dimensions, as
illustrated in Fig. 5, each wind speed location must be correlated with each other location in the longitudinal,
transverse (vertical in this example), and diagonal directions. The wind evolution scenario examined in this
paper, described in Section IV, involves introducing wind evolution to a frozen wind �eld using a simple
analytic formula for longitudinal coherence. Transverse coherence functions are already de�ned for the wind
�eld and longitudinal coherence must be introduced, but there is some ambiguity in the correlation between
points separated diagonally, or with some combination of transverse and longitudinal separation.
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When introducing wind evolution to a frozen wind �eld, the diagonal coherence functions must be de�ned.
A range of possibilities exist, but a simple solution is to restrict the diagonal coherence functions to be the
product of the coherence resulting from the transverse separation and the coherence resulting from the
longitudinal separation. This form of diagonal coherence is illustrated in Fig. 5 and is the coherence that
would result if the wind speeds at points x1; z1 and x1; z2 were correlated independently from the wind speeds
at points x1; z2 and x3; z2. Evaluations of diagonal coherence functions in a stable large eddy simulation
(LES) wind �eld with mean wind speed U = 7.6 m/s show that this assumption is very accurate for short
longitudinal separations (below �30 meters) and is a lower bound on the true diagonal coherence.

For wind �elds with three spatial dimensions, nine coherence functions exist to describe the correlation
between wind speeds at two di�erent points. Each of the u, v, and w components at one point are correlated
with each component at the other point. For the Great Plains-Low Level Jet wind �eld used in this paper,
all of these coherence functions are non-zero, which will be discussed more in Section IV. In general, the
correlations between the u components, the v components, and the w components at both points are greater
than the \cross" component correlations.

Figure 5. Longitudinal, transverse, and diagonal correlations between wind speed locations in a wind �eld
with two spatial dimensions.

IV. Wind Field and Wind Evolution Model

A wind �eld characteristic of the U.S. Great Plains region generated by TurbSim is used to demonstrate
the addition of wind evolution to a frozen wind �eld. A simple exponential form of longitudinal coherence
is used to create wind evolution in this wind �eld. By adjusting a decay parameter, the intensity of wind
evolution can be varied.

A. The Great Plains-Low Level Jet Wind Field

Wind conditions generated by TurbSim using the Great Plains-Low Level Jet (GP LLJ) spectral model9

were used in previous studies6,7, 14 to evaluate LIDAR measurements and controller performance. The wind
�elds are designed to be used with NREL’s 5-MW turbine model with a hub height of 90 m and a rotor
radius of 63 m. We have chosen one of these conditions as a wind �eld to which wind evolution can be
introduced. Table 1 summarizes this unstable wind condition at three di�erent heights including hub height
and 50 meters below and above hub height.

The spectra of the u, v, and w components of wind speed are shown in Fig. 6 for the heights summarized
in Table 1. The spectra are included to illustrate some of the trends that can be seen in the measurement
coherence results described in Section VI.

For TurbSim’s Great Plains-Low Level Jet spectral model, the transverse coherence at a frequency f
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Table 1. A summary of the Great Plains-Low Level Jet wind �eld used for wind speed measurement analysis
with the 5-MW wind turbine model. U indicates the mean streamwise wind speed, RiTL indicates the turbine
layer gradient Richardson number, and �D indicates the wind shear power law exponent. u� is the height-

dependent friction velocity. Friction velocity is de�ned as u� =

r���u0w0���, where u0 = u� �u and w0 = w � �w. TIU ,

TIV , and TIW are the turbulence intensities of the u, v, and w components of wind speed.

Height (m) U (m/s) RiTL �D u� (m/s) TIU (%) TIV (%) TIW (%)

40 12.25 0.598 9.2 9.4 7.2

90 13 -0.1 0.077 0.530 6.6 7.1 5.7

140 13.44 0.425 4.6 5.3 4.4

between points i and j in the yz plane is de�ned as

2i;j(f; l) = exp

0@�2al

s�
fri;j
�ui;j

�2

+ (blri;j)
2

1A (10)

where ri;j is the distance between the points, �ui;j is the average of the wind speeds at the two points, and al
and bl are coherence parameters de�ned for the u, v, and w wind components (l 2 fu; v; wg).9 The coherence
parameters al and bl are based on �eld measurements and are au = 9.513, av = 6.291, and aw = 4.535 and
bu = 0:384 � 10�3, bv = 0:108 � 10�2, and bw = 0:209 � 10�2. The u component of transverse coherence
given by equation 10 is shown in Fig. 7 (a) for transverse separations of 2, 4, 8, 16, and 32 meters at hub
height (z = 90 m). This range of distances is indicative of the transverse separations used in calculations of
measurement coherence described in the next section.

As mentioned in the previous section, the coherence between the u and v, u and w, as well as v and w
components of wind speed is non-zero for the wind �eld used in this paper. The average Reynolds stress9

u0w0 for this wind �eld, where u0 = u� �u and w0 = w� �w, is -0.281 at hub height, which results in non-zero
uw coherence functions. For the u and v components, the average Reynolds stress u0v0 is �0:277 at hub
height, where the sign varies with each 10 minute realization of the wind condition. Furthermore, due to
the negative sign of the average u0w0 Reynolds stress, the phase of the u0w0 coherence function, given by
equation 9 is 180�. For consistency, we are treating the sign of the uv correlation as positive. Although the
v and w components are correlated as well, the LIDAR measurement scenarios investigated in this paper
include either u and v components or u and w components, but not both simultaneously. Therefore, we do
not use the vw correlations in any calculations. Figure 7 (b) contains the uw coherence curves for three
heights, corresponding to the bottom of the rotor, hub height, and the top of the rotor, as well as the uv
coherence function at hub height.

B. Exponential Wind Evolution Model

A model of wind evolution can be formed using a simple exponential model of coherence that is a function
of the non-dimensional product between the eddy wavenumber and longitudinal separation, as suggested in
Pielke and Panofsky.15 This model is given by

2(kD) = e�akD (11)

where k is the eddy wavenumber (k = f=U), D is the longitudinal separation between points in the wind
�eld, and a is a dimensionless decay parameter. This simple exponential model allows for an easy method of
varying the amount of wind evolution by adjusting the decay parameter. Increasing a increases the e�ects
of wind evolution by causing the coherence curve to decay faster with frequency. In Section VI, LIDAR
measurement coherence is calculated for the Great Plains-Low Level Jet wind �eld using this exponential
longitudinal coherence function to describe the evolution of the u, v, and w components for a range of decay
parameters.
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Figure 6. Power spectral densities of wind speed components at heights of 40 m, 90 m, and 140 m for the
Great Plains-Low Level Jet wind condition described in Table 1.

V. LIDAR Measurement Coherence

The quality of a wind speed measurement as inuenced by evolution can be judged by the coherence
between the estimate of the u component of the line-of-sight LIDAR measurement and the true u component
that reaches the rotor plane. Referring to Fig. 2, the upwind point at which the LIDAR is focused is called
point j, while the point where the evolved wind meets the rotor plane is called point i. Points i and j have
the same transverse coordinates but are separated longitudinally by the preview distance D. The coherence
between the estimate of the u component at point j and the true u component at point i is written as

2uiû0
j

(f) =

���Suiû0
j

(f)
���2

Suiui (f)Sû0
j û

0
j

(f)
(12)

where û0j represents the estimate of the u component based on the line-of-sight LIDAR measurement. The
following derivation of the measurement coherence yields a formula in terms of power spectral densities of the
wind and coherence functions for any pair of points in the wind �eld, which we assume are known quantities
based on the wind �eld description in Section IV. This derivation is based on an analysis given by Schlipf
for the simple case where there is neither range weighting nor wind evolution.16

If we represent the unit vector in the direction that the LIDAR is pointing as

~‘ = [‘x; ‘y; ‘z] (13)

then based on the coordinate system in Fig. 2, the line-of-sight wind speed measurement is

uj;LOS = ‘xuj � ‘yvj � ‘zwj : (14)
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Figure 7. (a) Transverse coherence functions for the u component at a height of z = 90 m for transverse
separations of 2, 4, 8, 16, and 32 meters. (b) Coherence between the u and w components of wind at z = 27 m,
90 m, and 153 m, which correspond to the bottom of the rotor, the hub height, and the top of the rotor, and
coherence between the u and v components at z = 90 m.

Furthermore, the range weighted line-of-sight measurement is represented as

u0j;LOS = ‘xu
0
j � ‘yv0j � ‘zw0j (15)

where the range weighted velocity vector is given by

~u0j =

Z 1
0

~u
�
R~‘
�
W (F;R) dR (16)

with
~u = [u; v; w]: (17)

Based on equations 14 and 15, the estimate of the u component of a line-of-sight point measurement is given
by

ûj = 1
‘x
uj;LOS

= uj � ‘y
‘x
vj � ‘z

‘x
wj

(18)

and the estimate of u for a line-of-sight range weighted measurement is given by

û0j = 1
‘x
u0j;LOS

= u0j �
‘y
‘x
v0j � ‘z

‘x
w0j :

(19)

Note that forming an estimate of the u component in equations 18 and 19 by dividing the line-of-sight
velocity by ‘x is equivalent to dividing the line-of-sight velocity by cos � in equation 4. The measurement

angle � is equivalent to arctan

�p
‘2y+‘

2
z

‘x

�
.

Using equations 13 through 19, the terms Sû0
j û

0
j

(f) and Suiû0
j

(f) from equation 12 can be written in
terms of the transverse and longitudinal coherence functions in the wind �eld and the power spectral density
functions of the wind speeds. Letting ~U (f) = Ff~u (t)g and fg� represent the complex conjugate operation,
the Sû0

j û
0
j

(f) term can be expanded as

Sû0
j û

0
j

(f) = Û 0j (f) Û 0�j (f)

=
�R1

0
W (F; �) Û

�
�~‘; f

�
d�
��R1

0
W (F; �) Û�

�
�~‘; f

�
d�
�

=
R1
0

R1
0
W (F; �)W (F; �) Û

�
�~‘; f

�
Û�
�
�~‘; f

�
d� d�

=
R1
0

R1
0
W (F; �)W (F; �)Sû

�~‘
û
�~‘

(f) d� d�

(20)
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where Sû
�~‘
û
�~‘

(f) is the CPSD between the estimates of the u components at points with distances � and �

along the LIDAR beam. For each �; � pair, Sû
�~‘
û
�~‘

(f) can be expanded as

Sû
�~‘
û
�~‘

(f) = Û�~‘ (f) Û�
�~‘

(f)

=
�
U�~‘ (f)� ‘y

‘x
V�~‘ (f)� ‘z

‘x
W�~‘ (f)

��
U�
�~‘

(f)� ‘y
‘x
V �
�~‘

(f)� ‘z
‘x
W �
�~‘

(f)
�

= Su
�~‘
u
�~‘

(f) +
�
‘y
‘x

�2
Sv

�~‘
v
�~‘

(f) +
�
‘z
‘x

�2
Sw

�~‘
w
�~‘

(f)� ‘y
‘x

�
Su

�~‘
v
�~‘

(f) + Sv
�~‘
u
�~‘

(f)
�

� ‘z
‘x

�
Su

�~‘
w
�~‘

(f) + Sw
�~‘
u
�~‘

(f)
�

+
‘y‘z
‘2x

�
Sv

�~‘
w
�~‘

(f) + Sw
�~‘
v
�~‘

(f)
�
:

(21)
The measurement scenarios discussed in this paper include azimuth angles of  = 0�,  = 90�,  = 180�,

and  = �90�. As a result, the unit vector in the LIDAR direction either contains ‘y = 0 or ‘z = 0. In this
case, equation 21 simpli�es to

Sû
�~‘
û
�~‘

(f) = Su
�~‘
u
�~‘

(f) +
�
‘y
‘x

�2
Sv

�~‘
v
�~‘

(f) +
�
‘z
‘x

�2
Sw

�~‘
w
�~‘

(f)� ‘y
‘x

�
Su

�~‘
v
�~‘

(f) + Sv
�~‘
u
�~‘

(f)
�

� ‘z
‘x

�
Su

�~‘
w
�~‘

(f) + Sw
�~‘
u
�~‘

(f)
�
:

(22)
The complex-valued CPSD in equation 22 can be written in terms of its magnitude and phase as

Sû
�~‘
û
�~‘

(f) =
���Sû

�~‘
û
�~‘

(f)
��� ej��~‘ �~‘(f): (23)

Each term in equation 22 has the same phase, which is given by

��~‘ �~‘ (f) =
D�~‘ �~‘f

U
(24)

where D�~‘ �~‘ is the longitudinal separation between points at distances � and � along the LIDAR beam.
With knowledge of the PSDs of the wind �eld and the coherence between wind at any two points in the wind
�eld, the magnitudes of the CPSDs can be found by rearranging the formula for coherence in equation 6 as

jSxyj =
q
SxxSyy2xy: (25)

The calculation of the Suiû0
j

(f) term from equation 12 is performed in a similar fashion as the Sû0
j û

0
j

(f)

term. Suiû0
j

(f) can be expanded as

Suiû0
j

(f) = Ui (f) Û 0�j (f)

= Ui (f)
�R1

0
W (F;R) Û�

�
R~‘; f

�
dR
�

=
R1
0
W (F;R)Ui (f) Û�

�
R~‘; f

�
dR

=
R1
0
W (F;R)SuiûR~‘ (f) dR

(26)

where SuiûR~‘ (f) is the CPSD between the u component at point i on the rotor plane and the u estimate
based on the line-of-sight point measurement at a distance R along the LIDAR beam. For each distance R,
SuiûR~‘ (f) can be expanded as

SuiûR~‘ (f) = Ûi (f) Û�
R~‘

(f)

= Ui (f)
�
U�
R~‘

(f)� ‘y
‘x
V �
R~‘

(f)� ‘z
‘x
W �
R~‘

(f)
�

= SuiuR~‘ (f)� ‘y
‘x
SuivR~‘ (f)� ‘z

‘x
SuiwR~‘ (f) :

(27)

Once again, equation 27 can be described by its magnitude and phase as

SuiûR~‘ (f) =
��SuiûR~‘ (f)

�� ej�iR~‘(f) (28)

where

�i R~‘ (f) =
Di R~‘f

U
(29)

with DiR~‘ representing the longitudinal separation between the point i on the rotor plane and the distance
R along the LIDAR beam.
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A. Components of Measurement Coherence

There are several factors that may cause a decrease in measurement coherence de�ned by equation 12. In
addition to wind evolution, error sources characteristic of LIDAR measurements in non-evolving wind �elds
such as range weighting and directional bias will cause a loss of coherence. Figure 8 compares the components
of coherence for three di�erent measurement geometries by showing measurement coherence with various
combinations of the error sources included. Each scenario involves a LIDAR located at the hub measuring
wind at a radial distance of r = 47.25 m at an azimuth angle of  = 90�, but with di�erent preview
distances (D = 24, 58, and 130 meters). The curves in Fig. 8 do not include the e�ects of uv correlation
in order to highlight the other sources of coherence loss. When D = 24 m, the measurement angle is large,
longitudinal coherence (dashed) is relatively high, and the e�ects of range weighting are insigni�cant due to
the short focal distance. Here, directional bias dominates the overall coherence, with wind evolution causing
some degradation at higher frequencies. When D = 130 m, the measurement angle is low, longitudinal
coherence is low due to wind evolution, and range weighting is signi�cant due to the long focal distance.
Wind evolution is the dominant component of measurement coherence, with range weighting adding a further
loss of coherence. For the D = 58 m scenario, all three sources of coherence loss are signi�cant. Directional
bias and wind evolution both have very strong impacts, with range weighting causing an additional loss of
coherence.

Figure 8. A comparison of the components of measurement coherence for a scanning LIDAR scenario with
r = 47.25 m using the Great Plains-Low Level Jet wind �eld and exponential coherence with � = 0.45.

Figure 8 reveals that the (green) coherence curves from directional bias alone are relatively constant over
all frequencies and increase as measurement angle decreases. When the e�ects of uv and uw coherence are
included, then measurement coherence due to directional bias changes because of the non-zero correlation
between the u and v as well as u and w components. This behavior can be explained through equations
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21 and 27. By comparing the green and magenta curves in Fig. 8, it can be seen that range weighting
adds a signi�cant coherence loss when wind evolution is not included, especially for larger preview distances.
However, by comparing the blue and black curves, it is clear that with wind evolution included, range
weighting never dominates the overall coherence loss.

VI. LIDAR Measurements of Evolving Wind Fields

Using the Great Plains-Low Level Jet wind �eld with the exponential coherence model for an unstable
boundary layer, LIDAR measurement quality is assessed for realistic scanning geometries. Similar to the
results for scanning LIDAR performance in frozen wind �elds discussed in Section II-C, measurement quality
is examined for di�erent scan radii as a function of preview distance. However, instead of using RMS error
to judge measurement quality, here the metrics are based on coherence between the measured wind and the
wind that reaches the rotor, as described in equation 12, using the calculations outlined in Section V. Two
metrics are used to reveal the measurement quality for di�erent scan geometries. The �rst metric is the
\coherence bandwidth," de�ned here as the bandwidth where the measurement coherence remains above
0.5. A higher coherence bandwidth yields a better measurement because more of the measured turbulence
spectrum can be used in a wind preview-based controller. The second metric is the integral of measurement
coherence, or the area under the coherence curve. The integration is only performed for a bandwidth of
0.5 Hz because the energy in the wind is relatively low for higher frequencies. A larger area under the
coherence curve will yield a better measurement. Results based on the two metrics are similar, but both are
provided here for comparison.

The following results compare measurement quality for di�erent scan geometries and reveal the optimal
preview distances in terms of maximizing the coherence bandwidth or coherence integral. For the exponential
wind evolution model, the decay parameter a is varied to show the impact that wind evolution intensity has
on optimal preview distance. Separate results are provided for four di�erent LIDAR azimuth angles  . Using
the de�nition of azimuth angle in Fig. 2, results are provided for  = 90� and �90�, where the LIDAR is
only measuring wind in the xy plane,  = 0�, where the LIDAR is measuring wind in the xz plane above
hub height, and  = 180�, where wind is measured in the xz plane below hub height. These four azimuth
angles were chosen because the wind spectra and transverse coherences are di�erent in the y and z directions.
In addition, ‘y will be positive for  = 90� and negative for  = �90�. Similarly, ‘z will be positive for
 = 0� and negative for  = 180�. This allows us to investigate the impact of uv and uw cross-correlations
in equations 21 and 27 for both positive and negative ‘y and ‘z components. Furthermore, the spectra and
transverse coherence curves vary with height, so measurements above and below hub height are analyzed.

The chosen scan geometries are based on the NREL 5-MW turbine model. Scan radii of 15.75 m, 31.5 m,
47.25 m, and 63 m are investigated, which correspond to 25%, 50%, 75%, and 100% blade span. For the
NREL 5-MW model, the LIDAR is located in the spinner of the turbine at a height of 90 meters.

For the four scan radii investigated, Fig. 9 compares the 2 = 0.5 coherence bandwidths of measurement
coherence as a function of preview distance for a range of decay parameters. Note that the green curves
represent a decay parameter a = 0, which is equivalent to no wind evolution (Taylor’s frozen turbulence
hypothesis). Coherence bandwidth curves are provided for the four di�erent azimuth angles. For shorter scan
radii, the preview distances that provide maximum coherence bandwidth are shorter because the degradation
due to directional bias that enters the coherence calculations through equation 22 is lower than for larger
scan radii. Therefore with small scan radii, the dominant source of coherence loss transitions from directional
bias to wind evolution or range weighting at shorter preview distances.

In Fig. 9, the curves for azimuth angles  = 90� and  = 180� are very similar as are the curves for
azimuth angles  = 0� and  = �90�. For  = 90� and  = 180�, the CPSDs between the u and v as well
as the u and w components introduce a negative contribution in equations 21 and 27. This behavior is due
to ‘y and Suv (f) both having positive signs and ‘z and Suw (f) both having negative signs. The negative
contribution of the v and w components causes a reduction in both the magnitude of the measured LIDAR
signal and the overall measurement coherence. In contrast, for  = �90� and  = 0�, ‘y is negative while
the sign of Suv(f) is positive and ‘z is positive while the sign of Suw(f) is negative. Therefore the CPSDs
between the u and v as well as the u and w components introduce a positive contribution in equations 21
and 27. The positive contribution of the v and w components causes an increase in both the magnitude of
the measured LIDAR signal and the overall measurement coherence.

Further variations between the curves for di�erent azimuth angles in Fig. 9 reveal how the relative
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Figure 9. 2 = 0.5 coherence bandwidth vs. preview distance for the Great Plains-Low Level Jet wind �eld
for scan radii of r = 15.75 m, 31.5 m, 47.25 m, and 63 m. Wind evolution is based on an exponential coherence
model with various decay parameters.

magnitudes of the wind spectra components a�ect measurement coherence. Measurements at azimuth angles
of  = 0� and  = 180� in the xz plane produce higher coherence bandwidths than measurements at
 = �90� and  = 90� in the xy plane, respectively. The improved results for the measurements in the
xz plane can be explained by examining the wind spectra in Fig. 6. The ratio between the v component
of the wind spectrum to the u component is greater than the ratio between the w and u components at all
heights, so the v component of the wind corrupts measurements more than the w component. Therefore,
when measurements are con�ned to the xy plane, there is more coherence loss due to directional bias e�ects
than when measurements are con�ned to the xz plane.

Figure 10 shows results for the same measurement scenarios as in Fig. 9, but with the integral of the
coherence curves as the measurement quality metric. Most of the trends are similar to those in Fig. 9, but
with slightly di�erent optimal preview distances.

While the maximum coherence bandwidths are much lower for larger decay parameters as can be expected,
interestingly, the optimal measurement preview distances do not change very much as a is varied when using
the coherence bandwidth metric. When using the integral of coherence as a metric, the optimal preview
distance is much more sensitive to changes in the decay parameter. Figures 11 and 12 show the optimal
preview distance as a function of decay parameter for the four azimuth angles at the four scan radii when
the quality metrics are the coherence bandwidth and the integral of the coherence curve, respectively. Also
shown in these plots are the maximum bandwidths and integrals achieved at the optimal preview distances.
Instead of decreasing monotonically as the wind evolution intensity increases, as might be expected, the

15 of 19

American Institute of Aeronautics and Astronautics



Figure 10. Integral of measurement coherence from 0 Hz to 0.5 Hz vs. preview distance for the Great Plains-
Low Level Jet wind �eld for scan radii of r = 15.75 m, 31.5 m, 47.25 m, and 63 m. Wind evolution is based
on an exponential coherence model with various decay parameters.

optimal preview distances based on coherence bandwidth become greater as the decay parameter is increased
up until a certain point where they begin to decrease. For both metrics, there is a considerable di�erence
between the optimal preview distances for the di�erent azimuth angles. This suggests that when measurement
coherence is higher due to positive contributions from the uv and uw cross-correlations or weaker transverse
wind components, the optimal preview distance is shorter because the directional bias e�ects are less severe.

VII. Conclusions and Future Work

In this paper, we have explained how wind evolution can be described by longitudinal coherence functions
in a wind �eld. We examined the coherence between LIDAR measurements and true wind speeds in evolving
wind �elds for realistic preview measurement scenarios. Wind evolution was introduced to a frozen wind �eld
that is characteristic of the U.S. Great Plains, using a simple exponential model of longitudinal coherence
that is a function of the non-dimensional value kD. Using wind spectra and coherence functions determined
from the Great Plains-Low Level Jet wind �eld, we calculated measurement coherence directly, without
having to perform computationally expensive and memory intensive simulations of LIDAR measurements in
evolving wind �elds.

Measurement coherence loss is dominated by the directional bias source of error for short preview distances
due to high measurement angles. Further, the coherence is sensitive to both the cross-correlation of the wind
components as well as the relative magnitudes of the transverse and longitudinal components of wind speed.
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Figure 11. Maximum 2 = 0.5 coherence bandwidth preview distance vs. decay parameter for the Great
Plains-Low Level Jet wind �eld using the exponential wind evolution model for scan radii of r = 15.75 m,
31.5 m, 47.25 m, and 63 m. Corresponding maximum coherence bandwidths are shown using a secondary axis
(right) in green.

As preview distance increases, the main source of coherence loss transitions to wind evolution. Figure 8 shows
how LIDAR range weighting is not the dominant source of coherence loss when wind evolution is introduced,
but can have a signi�cant impact when the the intensity of wind evolution is low and the preview distance
is large.

Varying the intensity of wind evolution by adjusting the decay parameter a�ects the measurement co-
herence considerably. However, using coherence bandwidth as a metric, it was revealed that for a given scan
radius the optimal preview distance is not very sensitive to the amount of wind evolution. When using the
area under the coherence curve as a metric, the optimal preview distance for a given scan radius is more
sensitive to changes in the decay parameter.

Based on the results from Section VI, optimal preview distances for LIDAR measurements in evolving
wind �elds based on coherence bandwidth are roughly 60 meters for a scan radius of r = 31:5 meters, 80
meters for r = 47:25 meters, and 120 meters for r = 63 meters for decay parameters less than 1. Using the
integral of coherence as a metric, the optimal preview distances vary considerably as the decay parameter
changes. Optimal preview distances using RMS error as the metric in a frozen wind �eld (Fig. 4) are
around 115 meters, 150 meters, and 225 meters for scan radii of r = 31:5 m, r = 47:25 m, and r = 63 m,
respectively. While the exact preview distances vary depending on the metric used, with wind evolution
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Figure 12. Optimal preview distance based on integral of measurement coherence vs. decay parameter for the
Great Plains-Low Level Jet wind �eld using the exponential wind evolution model for scan radii of r = 15.75 m,
31.5 m, 47.25 m, and 63 m. Corresponding maximum integrals of measurement coherence from 0 Hz to 0.5 Hz
are shown using a secondary axis (right) in green.

introduced, optimal preview distances based on coherence bandwidth are roughly half of those in frozen
wind �elds based on RMS error. However, when comparing results based on coherence bandwidth for
di�erent decay parameters, it can be seen that unless the intensity of evolution is very strong, the optimal
preview distances are almost the same with wind evolution or without (when the decay parameter a = 0).

Future work will include studying large eddy simulations of the boundary layer to determine more realistic
longitudinal coherence functions. In addition, by examining LES wind �elds, more accurate coherence
functions can be calculated for points in a wind �eld that are separated in both the longitudinal and transverse
directions. Using these coherence functions, it will no longer have to be assumed that the coherence between
two arbitrary points in a wind �eld is the product of longitudinal and transverse coherence.

Although not discussed in this paper, an additional source of error in wind speed measurements is the
e�ect of the induction zone upwind of the rotor. The induction zone, which extends roughly one rotor
diameter in front of the turbine, has the e�ect of slowing down the advection velocity of the wind near the
rotor as well as distorting the turbulence. The impact of the induction zone on wind speed measurements is
an area of future study.
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