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Abstract

LIDAR systems are able to provide preview information of wind speed, direction and shears at various
distances in front of the wind turbines. This technology paves the way for new control concepts such as
feedforward control and model predictive control to increase the energy production and to reduce loads
of wind turbines. This paper describes how the necessary information can be obtained from wind speed
measurement provided by a nacelle or spinner based LIDAR system and how this information can be
used to improve collective and cyclic pitch control as well as speed and yaw control of wind turbines.

1 Introduction

In recent years LIDAR (Light detection and ranging) technology found its way into wind energy. The
possibility to optimize the energy production and reduce the fatigue and extreme loads by nacelle or
spinner based LIDAR systems is an important issue. The presented work describes how wind char-
acteristics, such as wind speed, direction and shears, can be reconstructed from the limited provided
information and how this information can be used in different applications. The strategies are tested
using full turbulent wind fields and an aeroelastic simulation model of a 5 MW wind turbine. The wind
information is obtained by simulating a LIDAR system with the LIDAR simulator presented in [1].
The work focuses on LIDAR assisted feedforward collective pitch using the knowledge of the incoming
wind speed providing an additional control update to assist common collective pitch control. Tradition-
ally, the rotor speed is adjusted by changing the blade pitch angle depending on the rotor speed itself.
Due to the inertia of the rotor, the speed adaptation to the changing inflow conditions is delayed. Addi-
tional load reduction compared to a sophisticated feedback controller can be archived [2]. The core of
this controller is an adaptive filter accounting for not perfect LIDAR measurements and wind evolution.
Then the theoretical potential to increase the energy production by tracking optimal inflow conditions is
presented. A predictive feed forward control strategy is proposed to exploit the benefit of the knowledge
of the incoming wind. The comparison to existing indirect speed control strategies shows a marginal
increase in energy output at the expense of raised fluctuations of the generator torque [3].
A Nonlinear Model Predictive Control (NMPC) is also presented, which predicts and optimizes the future
behavior of a wind turbine using the wind speed preview adjusting simultaneously the pitch angle and
the generator torque. The multi variable nature of the NMPC allows to archive further load reductions
especially for for wind conditions near rated wind speed [4].
Furthermore, an cyclic pitch feedforward controller using the measured horizontal and vertical shear is
introduced to assist common cyclic pitch control for further reduction of blade loads. Results from sim-
ulations ([5], [6]) are promising, but they have to be further investigated under more realistic conditions.
Finally, the benefit of LIDAR assisted yaw control is explored. Traditionally, the wind direction signal is
measured at one single disturbed point behind the blades. A promising way to obtain a more accurate
measurement of the incoming wind direction is to measure it over the full rotor plane ahead of the turbine
by LIDAR. To evaluate the benefit in energy output, measurements from a nacelle sonic anemometer
are compared to a scanning LIDAR system installed on a 5 MW turbine [7]. The expected increase of
the energy output is about one percent of the annual energy production, when using the wind direction
signal from the LIDAR system instead of the sonic anemometer [3].
This paper is organized as follows: Section 2 deals with the wind field reconstruction based on line-
of-sight wind speeds and simulations of LIDAR measurements. In Section 2 to 6 the different control
concepts are presented. Section 7 concludes the paper.
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Figure 1: Ambiguity in wind reconstruction.

2 Wind Reconstruction and LIDAR simulations

To be able to use LIDAR measurements in turbine control they first have to be analyzed. In this section
a method is proposed to retrieve the necessary information for LIDAR assisted control from nacelle or
spinner based LIDAR measurements. First the ambiguity in wind reconstruction is presented. Then
LIDAR and wind models are introduced to which can be applied to reconstruct wind characteristics.
Finally a more detailed LIDAR model used for simulation is described. Further details can be found in
[3].

2.1 The Cyclops Dilemma

LIDAR systems are able to measure the speed of aerosols by the Doppler shift in the frequency of
backscattered light. The limitation to the line-of-sight direction causes a problem using a single nacelle
or spinner based LIDAR system for wind turbine control. This effect we called the ”Cyclops dilemma”:
As a Cyclops cannot see three-dimensionally with only one eye, it is not possible to measure a three-
dimensional wind vector by only one LIDAR system. For reconstruction of the three dimensional wind
vector, three LIDAR systems focusing on the same point with linearly independent laser beams are
needed, as used in the Musketeer experiment [8]. Using only one nacelle or spinner mounted LIDAR
system, the two missing systems can be omitted by using e.g. one of the following two assumptions:

1. no vertical and no horizontal wind component

2. no vertical component and homogeneous flow

In Figure 1 the effect of both assumptions is shown. In this case the 3D vectors in the location p1 and
p2 (measured at the same height) should be reconstructed from the line-of-sight wind speeds vlos,1 and
vlos,2. The first assumption yields a11 and a21 representing a horizontal shear. By the second assump-
tion the resulting vectors a12 and a22 are equal representing a cross-flow, as homogeneous flow on each
height was assumed.
The dilemma exists, as long as the LIDAR measurement is used for yaw and pitch control at the same
time: If the first assumption is used to calculate the inhomogeneous inflow, perfect alignment is as-
sumed. If the second assumption is used to obtain the misalignment, homogeneous flow is assumed.
Nevertheless, nacelle or spinner based LIDAR systems can provide a good estimate of wind charac-
teristics such as wind speed, shear and wind direction, depending on the used assumptions. Those
assumptions will be used to derive internal reduced wind and LIDAR models. These models can be
used in an estimator and have to be designed depending on the application. The estimator will give a
perfect estimation of the wind characteristics, if the simulation model coincide with the internal model.
Depending on the robustness, the estimated values will differ from the real ones using real data or more
complex simulations. This method will be explained in the remainder of this section.
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2.2 Model of the LIDAR Measurements for Reconstruction

In a first step it is important to understand the problem introduced by the measurement technique. The
LIDAR measurement of line-of-sight wind speed vlos,i of each focus point

[
xi yi zi

]T
can be modeled

by
vlos,i = lxiui + lyivi + lziwi, (1)

which is the projection of the wind vector
[
ui vi wi

]T
in the ith focus point on the normalized laser

beam vector with focus length fi: 



lxi
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lzi



 =
1

fi





xi

yi
zi



 . (2)

This equation shows how information is lost: For each measurement this model gives one equation
with 3 unknowns (ui, vi, wi) and therefore cannot be solved. By using three LIDAR systems focusing
from linearly independent directions at the same focus point two equations can be added without new
unknowns and the wind vector can be reconstructed with a unique solution.

2.3 Wind Reconstruction Models

The LIDAR measurement models (1) and (2) can be combined with different wind construction model
which has to be chosen according to the application.

2.3.1 Wind Reconstruction Model v0

The simplest model assumes that only the rotor effective wind is present and no shears or inflow angles.
In this case the ui component is equal to the rotor effective wind, the vi and wi are 0:





ui

vi
wi



 =





v0
0
0



 . (3)

Using (1) yield:

vlos,i = lxiui. (4)

For nfp focus points measured in the same vertical measurement plane in front of the turbine (xi = x∀i),
the rotor effective wind can be defined as:

v0 =
1

nfp

n∑

i

ui/lxi. (5)

2.3.2 Wind Reconstruction Model v0-δH-δV

In the second model, the wind direction is known and it is assumed that the wind is homogeneous in
a vertical measurement plane in front of the turbine (xi = x∀i). If there is no tilted inflow αV and no
misalignment αH the turbulent wind vector field is reduced to





ui

vi
wi



 =





v0 + δHyi + δV zi
0
0



 . (6)

Following unknown wind characteristics are used: v0 is the effective wind speed and δH and δV are the
horizontal and vertical shear, respectively.
The advantage of this reduction is that nfp measurements gathered simultaneously in the same mea-
surement plane can be combined to get an estimation for the rotor effective wind characteristics. For
non simultaneous measurements of scanning LIDAR systems, the last nfp focus points of a scan can
be used. In both cases the focus points should be well distributed. For the combination of different
measurement planes, e.g. by a pulsed system, see Section 2.4.

3



If, for example, it is assumed, that there is no tilted inflow and no misalignment (αV = αH = 0), following
equations are obtained using (6), (1) and (2):





f1vlos,1
:

fnfp
vlos,nfp





︸ ︷︷ ︸

m

=





x xy1 xz1
: : :
x xynfp

xznfp





︸ ︷︷ ︸

A





v0
δH
δV





︸ ︷︷ ︸

s

. (7)

A solution for all three wind characteristics can only be found, if rank(A) = 3. If all measurements are
obtained in one straight line, this condition is not fulfilled. For nfp = 3 there is one unique solution

s = A−1m. (8)

For nfp > 3 a solution can be selected by the method of least squares. If for example δH or δV is set to
zero, because is assumed that there is no horizontal shear, there is no impact to the estimation of the
other two unknowns. In a similar way a model v0-αH -αV can be derived.

2.3.3 Wind Reconstruction Model v0-αH

This model assumes that there is no shear and no tilted inflow and that the wind speed v0 and the
misalignment αH are the same.





ui

vi
wi



 =





u
v
w



 =





v0 cosαH

v0 sinαH

0



 . (9)

Using (9), (1) and (2) a linear system in u and v can be formulated:






f1vlos,1
:
:

fnfp
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︸ ︷︷ ︸

m
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: :
: :
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︸ ︷︷ ︸

A

[
u
v

]

︸︷︷︸

s

. (10)

This system can be solved using the estimator (8), if rank(A) = 2. The wind characteristics can be
calculated:

v0 =
√

s21 + s22 (11)

αH =arctan
s1
s2

,

with si the ith component of s.
The proposed model is validated with measurement data where a lidar scanner was installed on the
nacelle of a stopped wind turbine with a hub height of 34 m at the Risø-DTU test site [9]. The lidar system
points to a met mast equipped with several ultrasonic anemometers. Figure 2 shows the reconstruction
methods of the u and v component yield good correlations.

2.3.4 Wind Reconstruction Model v0-αH-δV

The next model takes the unknown misalignment αH of the turbine and the unkown verical shear δV in
consideration and assumes that there is no horizontal shear and no tilted inflow:





ui

vi
wi



 =





cosαH(v0 + δV zi)
sinαH(v0 + δV zi)

0



 . (12)

Using (12), (1) and (2) a nonlinear equation system in v0, αH and δV is obtained, but similar to (7) a
linear system in s can be formulated:
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︸ ︷︷ ︸
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︸ ︷︷ ︸

s

. (13)
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Figure 2: Comparison of longitudinal and lateral wind speed (1 min average) from sonic (gray) and
reconstructed from lidar data (black).

This system can be solved using the estimator (8), if rank(A) = 4. The wind characteristics can be
calculated:

v0 =
√

s21 + s23 (14)

αH =arctan
s1
s3

δV =
√

s22 + s24,

with si the ith component of s. In the same way a model v0-αV -δH can be defined.

2.3.5 Problems of Wind Reconstruction Model v0-αH-δH

Instead of, or in addition to δV , the horizontal shear can be included in the wind model (12):




ui

vi
wi



 =





cosαH(v0 + δHyi)
sinαH(v0 + δHyi)

0



 . (15)

But when combining (15), (1) and (2) one obtains:
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: : : :
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︸ ︷︷ ︸
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v0 cosαH

δV cosαH

v0 sinαH

δV sinαH







︸ ︷︷ ︸

s

. (16)

Due to the same x component, the second and third column are linear dependent (rank(A) ≤ 3) and
therefore αH and δH cannot be estimated with the estimator (8). With a pulsed LIDAR system, it is
possible to avoid this problem by measuring in different planes in front of the turbine and by combining
those measurements, but this is beyond the scope of this work. The presented problem also holds for a
model v0-αV -δV .
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Figure 3: Normalized range weighing function fL(a) for a pulsed LIDAR system.

2.4 Simulated LIDAR Measurements and Reconstruction

LIDAR systems need to be simulated to test LIDAR assisted controller. The model (1) is very simplified
due to the volume measurement of real LIDAR systems. The line-of-sight wind speed can be modeled
more realistically by the following equation:

vlos,i =

∫
∞

−∞

(lxiu(a) + lyiv(a) + lziw(a))fL(a)da. (17)

The weighting function fL(a) at the distance a to the focus point depends on the used LIDAR technology
(pulsed or continuous wave). For the simulation in Section 4 to 7 a Gaussian shape weighting function
with full width at half maximum (FWHM) of W = 30 m is used, see Figure 3, following the considerations
of [10] and [11]:

fL(a) =
e−4 ln 2(a/W )2

∫
∞

−∞
e−4 ln 2(a/W )2da

=
2 ln 2e−4 ln 2(a/W )2

W
√
ln 2π

. (18)

3D Wind fields generated e.g. with TurbSim [12] over time t and the coordinates y and z can be scanned
at a trajectory point [ti, xi, yi, zi] by assuming Taylor’s Hypothesis of Frozen Turbulence. The xi coordi-
nate is transformed with the mean wind speed ū to

TTaylor = xi/ū. (19)

The 3D wind fields can then be evaluated at ti + TTaylor. In this work a pulsed system with a circular
trajectory is used, which is performed within Tt = 2.4 s with 12 focus points in 5 focus distances equally
distributed between 0.5D and 1.5D with the rotor diameter D = 126 m, resulting in a update rate of
∆tL = 0.2 s, see Figure 4. This trajectory was realized by a real scanning LIDAR system installed
on the nacelle of a 5 MW turbine (see [7]). In the simulation, effects such as collision of the laser
beam with the blades, volume measurement and mechanical constraints of the scanner from data of
the experiment are considered to obtain realistic measurements. The wind characteristics are then
reconstructed using 4, extended for pulsed LIDAR systems with several measurement distances: For
each distance i the longitudinal wind component is averaged over the last trajectory for a rotor effective
value and the obtained time series of the measurements vi is time-shifted according to Taylor’s frozen
turbulence hypothesis. The preview time is then TTaylor,i reduced by the time shift due to the running
average of half of the trajectory duration Tt, see Figure 5. The rotor effective wind speed v0(t) is then
calculated by

v0(t) =
1

5

5∑

i=1

vi(t− TPreview,i). (20)

This improves the short term estimation, because the measurements of further distances can be stored
and used to obtain more information when reaching the nearest distance. If there is no measurement
available for the first focus distance, the average is made only over the last four distances and so on.
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Figure 4: Simulated LIDAR system performing a circular trajectory.
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Figure 6: Degrees of freedom for the reduced nonlinear model (a), the first order model (b) and the
linear model (c).

3 Modeling of the Wind Turbine

The crucial part of a successful feedforward and model predictive controller design is the adequate
modeling of the dynamic system to be controlled. The model should be simple enough to allow a partial
system inversion (for the feedforward controller design) and simulations in reasonable computation time
(for the NMPC) and at the same time it should be accurate enough to capture the system dynamics
that are relevant for the wind turbine control. The reduced model can be also used in an estimator to
estimate the rotor effective wind speed from turbine data.

3.1 Reduced Nonlinear Model

Classically aeroelastic simulation environments for wind turbines such as FAST [13] (used later in this
work), provide models close to reality but far to complex to be used for controller design. In addition,
current remote sensing methods such as LIDAR are not able to provide a wind field estimate with
comparable details to a generic wind field used by aeroelastic simulations (generated in this work with
TurbSim [12]). In this section a turbine model with three degrees of freedom (see Figure 6(a)) is derived
from physical fundamentals and the wind field is reduced to the rotor effective wind speed which is
measurable with existing LIDAR technology.
The first tower fore-aft bending mode, the rotational motion and the collective pitch actuator are based
on [14]:

JΩ̇ +Mg/i = Ma(ẋT ,Ω, θ, v0) (21a)

mTeẍT + cT ẋT + kTxT = Fa(ẋT ,Ω, θ, v0) (21b)

θ̈ + 2ξωθ̇ + ω2(θ − θc) = 0. (21c)

Equation (21a) models the drive-train dynamics, where Ω is the rotor speed, Ma is the aerodynamic
torque and Mg the electrical generator torque, xT the tower top fore-aft displacement, θ the effective
collective blade pitch angle, and v0 the rotor effective wind speed. Moreover, i is the gear box ratio and
J is the sum of the moments of inertia about the rotation axis of the rotor hub, blades and the electric
generator. Equation (21b) describes the tower fore-aft dynamics, Fa is the aerodynamic thrust and mTe,
cT , and kT are the tower equivalent modal mass, structural damping and bending stiffness, respectively.
These values were calculated according to [15] and [16]. Finally, equation (21c) is a second-order model
of the blade pitch actuator, where ω is the undamped natural frequency and ξ the damping factor of the
pitch actuator and θc is the collective blade pitch control input.
The nonlinearity in the reduced model resides in the aerodynamic thrust and torque acting on the rotor
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with the radius R:

Ma(ẋT ,Ω, θ, v0) =
1

2
ρπR3 cP (λ, θ)

λ
v2rel (22a)

Fa(ẋT ,Ω, θ, v0) =
1

2
ρπR2cT (λ, θ)v

2
rel, (22b)

where ρ is the air density, λ the tip-speed ratio, defined as

λ =
ΩR

vrel
, (23)

and cP and cT are the effective power and thrust coefficients, respectively. The nonlinear cP and cT
coefficients can be obtained from steady state simulation.
The relative wind speed vrel is defined as a superposition of tower top speed and mean wind speed

vrel = (v0 − ẋT ), (24)

and is used to model the aerodynamic damping. The equations (21) to (24) can be organized in the
usual nonlinear state space form:

ẋ = f(x, u, d)

y = h(x, u, d), (25)

where the system states x, the system inputs u, disturbance d and measurable outputs y are

x =
[

Ω xT ẋT θ θ̇
]T

u =
[
Mg θc

]T

d = v0

y =
[

Ω ẍT θ θ̇
]T

. (26)

3.2 Estimation of the Rotor Effective Wind Speed from Turbine Data

The nonlinear reduced model (21) can be further reduced to a first order system (see Figure 6(b)) by
ignoring the tower movement and the pitch actuator:

JΩ̇ +Mg/i = Ma(Ω, θ, v0) (27a)

Ma(Ω, θ, v0) =
1

2
ρπR3 cP (λ, θ)

λ
v20 (27b)

λ =
ΩR

v0
. (27c)

This model is used to estimate the rotor effective wind speed v0 from turbine data. If parameter such
as inertia J , gear box ratio i and rotor radius R as well es the power coefficient cP (λ, θ) are known, and
data such as generator torque Mg, pitch angle θ, rotor speed Ω and air density ρ is measurable, the only
unknown in (27) is the rotor effective wind v0.
Due to the λ-dependency of the power coefficient cP (λ, θ) no explicit solution can be found. A solution
could be found by solving the (27) by iterations. But this would produce high computational effort for high
resolution data. Therefore a three dimensional look-up-table v0(Ma,Ω, θ) is calculated a priori from the
cubic equation (27b), similar to [17]. Here the equation (27b) in solved first in λ for numerical reasons.
The aerodynamic torque Ma can then be calculated on line from turbine data with (27a).

3.3 Linear Model

For the cyclic pitch feedforward controller (see Section 7), a model including the blade bending degree
of freedom is needed. It is obtained from an azimuth dependent nonlinear aeroelastic model consid-
ering the rotor motion, first flapwise bending modes of each blade and the first tower fore-aft bending
mode as depicted in Figure 6(c). The aeroelastic model is linearized, transformed with the Coleman-
Transformation and decoupled, details see [18].
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Figure 7: Feedforward control: The feedforward controller ΣFF tries to compensate the effects of the
wind field V to the rotor speed Ω.

4 LIDAR Assisted Collective Pitch Control

The collective pitch feedforward controller (see Figure 7) is based on the work in [2] and combines the
baseline feedback controller with a feedforward update. The main control goal of the collective pitch
feedback controller ΣFB is to maintain the rated rotor speed Ωrated. The system Σ is disturbed by a wind
field V, which can be measured by a LIDAR system ΣL in front of the turbine before reaching the rotor.
If the wind would not change on its way (ΣE = 1) and in the case of perfect measurement the measured
wind speed v0L and the rotor effective wind speed v0 are equal. The disturbance could be perfectly
compensated by a feedforward controller ΣFF = −Σ−1

Ωθc
ΣΩv0

, if the influence on the generator speed of
the wind ΣΩv0

and the pitch angle ΣΩθc is known and ΣΩθc is invertible.
In reality v0 cannot be measured perfectly due to the limitation of the LIDAR system and ΣE is quite
complex to model. However, if the transfer function Gv0Lv0

from the measured wind speed to the rotor
effective wind speed is known, the following feedforward controller compensates all the disturbances:

ΣFF = −Σ−1
Ωθc

ΣΩv0
Gv0Lv0

. (28)

Due to its complexity this perfect compensation cannot be found for an aeroelastic model, but for the
reduced nonlinear model presented above. With the stationary pitch curve θss(v0ss), which can be
obtained from simulations or measurements, the part −Σ−1

Ωθc
ΣΩv0

is:

θFF = θss((v̈0L + 2ξωv̇0L + ω2v0L)/ω
2). (29)

This controller is not proper but is well defined because of the LIDAR preview.
The transfer function Gv0Lv0

is modeled by

Gv0Lv0
= |Gv0Lv0

|eTPreviews, (30)

where TPreview is the preview time of the LIDAR due to Taylor’s Hypothesis. The magnitude can be ana-
lytically modeled or estimated from simulated or measured data via the auto spectrum of the measured
wind speed Sv0Lv0L

and the cross spectrum Sv0v0L
between the measured and the rotor effective wind

speed:

|Gv0Lv0
| = |Sv0v0L

|
|Sv0Lv0L

| . (31)

Figure 30 shows |Gv0Lv0
| for a 1 h simulation with mean wind speed v̄ = 16 m/s and a turbulence

intensity of 18% not over the frequency f as used commonly, but over the wavenumber k = 2πf/v̄.
Due to the Kaimal wind spectra used for these simulations and the LIDAR weighting function with fixed
length, the shape of |Gv0Lv0

| for different v̄ will be similar over k, but different over f . The rotor effective
wind speed v0 is obtained from turbine data by a first-order-estimator using (21a) and (22a) similar to
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Figure 9: Percentage of σ(Ω) depending on τ and k̂ compared to the baseline controller.

the one presented in [17] and v0L from the LIDAR simulator presented above. Due to its low pass
behaviour, the transfer function is modeled by

Gv0Lv0
= GFilter e(TPreview−TFilter−τ)s, (32)

where GFilter is a second order Butterworth filter with a filter delay TFilter averaged over the frequen-
cies below the cut-off frequency fcutoff = k̂v̄

2π determined by a maximum wavenumber k̂. The time τ
compensates small errors in the model reduction (see [5]).
To prove the model, the same 1 h simulation is repeated with different k̂ and τ , see Figure 9. The
minimum in the standard deviation σ(Ω) of the rotor speed is found as expected at k̂ = 0.06 rad/m and
τ = 0.4 s.
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5 LIDAR Assisted Speed Control

The main goal of generator torque based speed control for variable speed wind turbines is to maximize
the electrical power extraction below rated wind speed [19]. Therefore the turbine has to operate in
the optimal aerodynamic range, hence at the optimal angle of attack at the rotor blades. This angle is
represented by the ratio λ (27c) of the blade tip speed and the undisturbed rotor effective wind v0. The
electrical power Pel below rated wind speed than can be modeled as

Pel =
1

2
ρπR2v30

︸ ︷︷ ︸

P0

cP (λ)η, (33)

where ρ is the air density, P0 the power of the undisturbed wind, η the efficiency of the electro-mechanical
energy conversion and cP (λ) the power coefficient, representing the aerodynamic-mechanical energy
conversion depending below rated wind speed only on λ. The relation of the power coefficient and
λ depends on the rotor design and is shown for the used 5 MW turbine model in Figure 10(a). The
control goal to operate at the aerodynamic optimum can be refined to track the optimal tip speed λopt

by adjusting the generator torque Mg. This section shows how tracking λopt can be improved by using
the knowledge of the incoming wind and why, nonetheless, it cannot be recommended.
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Figure 10: (a) power coefficient cP over tip speed ratio λ and (b) optimal relation of rotor speed and
generator torque (dashed), used state feedback (solid) for the used turbine.

5.1 Indirect Speed Control

The particularity of controlling λ is the high nonlinearity of the control task and that λ is not available
under normal circumstances. Therefore a common output feedback controller such as PI-controller
cannot be applied. Normally nonlinear state feedback controllers are used, measuring the generator or
rotor speed.
For derivations of state feedback control laws, the following nonlinear reduced model of a turbine is
chosen according to [14]: where Ma is the aerodynamic torque, i the gear box ratio and J is the sum of
the moments of inertia about the rotation axis.
In steady state, the generator torque maintaining λopt can be determined by using (27) and (27c):

Mg,ISC(Ω) =
1

2
ρπR5 cp,max

λ3
opt

iΩ2, (34)

where all parameters are fixed, apart from the rotor speed. This equation is known as indirect speed
control (ISC) and is normally applied for variable speed turbines.
Figure 10(b) shows the ISC [16], modified for transition from startup and to full load. The intersection of
the state feedback law (solid) and the optimal, squared relation (dashed) is called ”Region 2”.
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5.2 Direct Speed Control

By the LIDAR technology λ becomes measurable and therefore the proposed controller is considered
as direct speed control (DSC). More details can be found in [3].
The basic idea of the proposed DSC is to keep the ISC and to find a feed forward update to compensate
changes in the wind speed similar to the one used for collective pitch control [2]. Therefore the error ε
is introduced

ε = Ω− Ωopt, (35)

where the optimal rotor speed Ωopt is defined as

Ωopt =
λoptv0
R

. (36)

Using (25) and (36), the dynamic of the error ε can be described by:

ε̇ = Ω̇− Ω̇opt =
1

J
(Ma(Ω, v0)−Mg/i)−

λopt

R
v̇0. (37)

With the proposed DSC

Mg,DSC(Ω) = Mg,ISC − iJ
λopt

R
v̇0(Ω)

︸ ︷︷ ︸

Mg,FF

(38)

the error dynamic is

ε̇DSC =
1

J
(Ma(Ω, v0)−Mg,ISC/i)

=
1

2
ρπR5(

cp(λ)

λ3
− cp,max

λ3
opt

)Ω2. (39)

Similar to [20] it can be shown that ε̇DSC < 0 and ε = 0 as long as the tip speed ratio resides above a
calculable lower limit. Therefore, in the nominal case, changes in the wind will be perfectly compensated
by the feedforward part Mg,FF . For the non-nominal case, caused by inaccurate measurements or
model uncertainties, the feedback part Mg,ISC compensates deviations from optimal operation.

5.3 Simulation Results

To demonstrate the effect of wind gust tracking by the use of wind speed signals, a coherent gust (similar
to [21], but with only 1 m/s amplitude) is applied to the reduced nonlinear system (25) of a 5 MW wind
turbine and ISC and DSC are compared. As seen in Figure 11, ISC reacts to wind speed changes slowly
as the rotor speed varies slowly. During the transition of the gust, the tip speed ratio departs from the
optimum λopt, resulting in a suboptimal angle of attack at the rotor blades and thereby reducing power
extraction from the wind. As opposed to this, feedforward based control, using a perfect wind speed
signal, can indeed maintain the optimal operation of the turbine. However the generator torque Mg has
to vary substantially to achieve the optimal lambda tracking and even is reaching negative values.
In a second step, a turbulent wind field with mean wind speed ū = 9 m/s and a turbulence intensity
of 10% is created by TurbSim [12]. The low turbulence level is chosen to remain in Region 2 during
the 10 min simulation. As simulation environment the FAST code [13] using a variable speed 5 MW
wind turbine model [16] is coupled to the LIDAR simulator presented in [1], using a circle trajectory, see
Figure 4. A rotor effective wind speed covering the rotor plane is calculated, using the model v0-α-δV
(6) and filtered using the filter (32). In Figure 12 the lower power spectral density (PSD) of the tip speed
ratio applying direct speed control can be observed most notably for frequencies below fcutoff. Therefore
the standard deviation σ(λ) is significantly reduced (see Table 1). However there is only a marginal
increase in the energy production Eel. For this estimation the differences in rotational energy stored in
the rotor are taken into account. Damage equivalent loads (DEL) for the low-speed shaft torque MLSS

are calculated based on a rainflow counting (Wöhler exponent of 4, lifetime 20 years, reference number
of cycles 2 ∗ 106) and show an increase of 34.7%.
In a third step, 33 simulations are performed by using turbulent wind fields (Weibull distribution with
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Figure 11: Reaction of the reduced model to a gust controlled by ISC (black) and DSC (gray).

C = 10 m/s, k = 2 and wind turbulence class A according to [21]). Bins of 2 m/s from 4 to 24 m/s are
chosen, each simulated with 3 different seeds. The feedforward control algorithm is only applied if a
wind within Region 2 is detected by the simulated LIDAR. Also for this extended evaluation the lifetime
weighted standard deviation for Region 2 σR2(λ) can be reduced. But the marginal increase in energy
extraction of 0.09% is bought dearly by increasing loads affecting the whole drive train including rotor
shaft, gear box, generator and bearings, represented by the low-speed shaft torque MLSS , where the
DEL rise up to 8.9% (see Table 2).

P
S

D
(λ

)
[1

/H
z]

f [Hz]

0 0.1 0.2 0.3 0.4 0.5 0.6
10−4

10−3

10−2

10−1

100

Figure 12: Power spectral density of the tip speed ratio: ISC (gray), DSC (black). Dashed: cutoff fre-
quency of the wind speed filter.
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σ(λ) Eel DEL(MLSS)
[-] [kWh] [MNm]

ISC 0.137 422.14 1.14
DSC 0.033 422.17 1.53
DSC/ISC [%] 24.1 100.01 134.7

Table 1: Comparison ISC and DSC for a 10 min simulation.

σR2(λ) Eel DEL(MLSS)
[-] [GWh] [MNm]

ISC 0.271 458.69 2.65
DSC 0.069 459.08 2.88
DSC/ISC [%] 25.6 100.09 108.9

Table 2: Life time comparison ISC and DSC.

5.4 Discussion

The fluctuation of the tip speed ratio can be used as a measure for the potential of energy optimization.
Assuming the distribution of the tip speed ratio ϕλopt;σ to be Gaussian with mean λopt and a standard
deviation σ(λ), then the generated power can be estimated by

Pel(σ(λ)) = Pel,max

∫
∞

−∞

ϕλopt;σ(λ)cP (λ)dλ. (40)

In Figure 13 this potential is quantified for the simulated wind turbine.
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Figure 13: Relative power extraction by variation in tip speed ratio for the simulated turbine.

With (40) and the detected reduction of the tip speed ratio in Table 2 only an improvement in the energy
production of 0.15% can be expected. Taking into account that by the given Weibull distribution, the
turbine is only operating 19.0% of its lifetime in Region 2, this value is further reduced to 0.03%. The
improvement of 0.09% in the energy production detected in the simulation is close to the expected value,
considering the difficulty to detect such a small value.
Whereas the benefit of DSC should be irrelevant for all turbine sizes, the negative effect on loads should
even increase for larger turbines due to the effect that the inertia J increases disproportionately.
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6 Nonlinear Model Predictive Control

Model predictive control (MPC) is an advanced control tool, which predicts the future behavior of the
system using an internal model and the current measurements. With this information the control actions
necessary to regulate the plant are computed by solving an optimal control problem over a given time
horizon. Part of the solution trajectory for the control inputs are transfered to the system, new measure-
ments are gathered and the optimal control problem is solved again. Feedback is obtained, since the
current state of the turbine is implemented as the initial condition of the optimal control problem.
The feedforward controller presented in the previous sections are updates to existing pitch and torque
feedback controllers. In contrast the MPC is a control strategy which in the presented case controls
pitch angle and generator torque independently from the common feedback controllers. This provides
the possibility for further improvements, but also makes real applications more complex.
Here the basic principle and simulation results of a nonlinear model predictive control (NMPC) are pre-
sented. More details can be found in [4].

6.1 Controller Design

In this subsection a short overview of MPC is given, the optimal control problem is derived and then
solved.
MPC can be categorized as either linear or nonlinear model predictive control. Linear MPC is based
on linear models and is successfully applied in several industrial applications since the 1980s, mainly in
chemical engineering [22]. However, many real systems have nonlinearities which cannot be neglected.
Here NMPC often yields improved results by considering nonlinear models, objective functions and
constraints.
There are several advantages of MPC in general. One is that it can handle multi-variable and non-
quadratic (different number of inputs and outputs) control tasks naturally: additional control inputs or
outputs will merely increase the number of optimization variables. Another advantage is that it considers
actuator and system constraints during solving the optimal control problem. Furthermore, it provides a
framework for incorporating a disturbance preview dynamically and tuning of MPC controllers is done
intuitively by changing weights of a definable objective function. However, the main advantage of MPC
is that it is in a mathematically sense an optimal controller. Solving the optimal control problem is
not an easy task and several methods exist. Independent of the used method, the basic principle of
model predictive control is illustrated in Figure 14 using piecewise constant parametrization: Future
control action is planned to fulfill the control goal, e.g. reference signal tracking, considering a predicted
disturbance.

past

predicted system

reference

predicted disturbanceprojected control

time horizon
future

Figure 14: Principle of NMPC: Over a given time horizon the control action to a nonlinear system is
optimized considering predicted disturbances to fulfill the control goals such as reference
signal tracking.
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6.1.1 Definition of the Optimal Control Problem

The considered optimal wind turbine control problem can be described by the following problem: The
objective is to find the optimal control trajectory u( · ) which minimizes the cost function JOCP , which is
defined as the integral over the time horizon Tf of the objective function F from the actual time t0 to the
final time t0 + Tf , with the reduced nonlinear model and the set of constraints H.

min
u( · ) JOCP

with: JOCP =

∫ t0+Tf

t0

F (x(τ), u(τ), d(τ))dτ,

s.t.: ẋ = f(x, u, d)

x(t0) = x0

H(x(τ), u(τ), d(τ)) ≥ 0 ∀τ ∈ [t0, t0 + Tf ]. (41)

The crux of designing the NMPC is to translate the verbal formulation of the control goal to a mathemat-
ical formulation of F and H. In wind energy the overall goal of development can be stated very roughly
as “minimizing energy production cost”. Such an optimization including the wind turbine design, man-
ufacturing cost and operation can be found in [23]. However, for the optimal control problem the wind
turbine is already designed and the optimal control goal can be stated very roughly as “maximizing en-
ergy production without damage during the lifetime of the turbine”, neglecting secondary requirements,
e.g. noise limits. By classic wind turbine control [19] this is in general done by tracking optimal tip speed
ratio below a certain wind speed defined as rated wind speed and by limiting rotor speed and power
above the rated wind speed. This could be redefined for the NMPC, but special care has to be taken
with NMPC characteristics. If for example the electrical power is directly maximized for wind speeds
below rated wind speed by F = (Pel − Prated)

2 [24], the NMPC will slow down the turbine by increasing
the generator torque, because this is optimal for the limited view of the NMPC, but evidently not for the
overall energy production. In this work the optimal control problem is based on the classic interpretation
of wind turbine control. The used objective function and constraints will be stated and explained here.
The objective function should be quadratic for numerical reasons (see Section 6.1.2). This requires the
weights to be independent of the states x and inputs u, but are allowed to be dependent on the external
disturbance d.

6.1.2 Solving the Optimal Control Problem

The optimal control problem is converted by the Direct Multiple Shooting method [22] into a nonlinear
program. Here the control inputs are discretized in K piecewise constant stages. The ODEs of the
model are solved numerically on each interval, starting in stage i with the initial values si for all states.
The optimization is performed over the set of initial values and the control outputs. Additional constraints
are applied to ensure that the states at the end of each stage coincide with the initial conditions of
the subsequent stage. This method gives significant improvements over the Direct Single Shooting
approach, especially with respect to numerical stability.
The resulting nonlinear program can be described as follows:

min
si,ui

JNLP

with : JNLP =

K−1∑

i=0

∫ Ti+1

Ti

F (xi(τ ; si, ui), ui, d(τ))dτ,

s.t.∀i : si+1 − xi(Ti+1; si, ui) = 0

ẋi(τ ; si, ui) = f(xi(τ ; si, ui), ui, d(τ))

H(xi(τ ; si, ui), ui, d(τ)) ≥ 0 ∀τ ∈ [Ti, Ti+1]. (42)

This nonlinear program can be solved iteratively with Sequential Quadratic Programming (SQP). The
separation of the optimization problem into multiple stages results in a faster solution. This is caused
by the better approximation of the Lagrangian Hessians of the nonlinear problem parts in each stage by
low rank updates [25].
Here Omuses [25] is used, a front-end to the large-scale SQP-type nonlinear optimization solver HQP.
The prediction horizon is chosen to Tf = 10 s as a compromise between the different preview times
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of the LIDAR. The time steps are set equal to the LIDAR update rate ∆tL = 0.2 s, resulting in K =
Tf/∆tL = 50 stages. The differential equations are solved with a fourth order explicit Runge Kutta
method.
The used control structure is depicted in Figure 16. A nonlinear estimator is used to estimate the tower
dynamic states xT and ẋT and consists of a static nonlinear estimation of the aerodynamic thrust and a
linear Luenberger estimator. To avoid resonance cases, notch filters (Butterworth, 2nd order) with stop
band at [0.9f3P , 1.1f3P ] and [0.9f0, 1.1f0] for y is used, where f0 is the natural frequency of the tower.
The number of control steps applied in a feedforward control to the system after each optimization is
chosen to KFF = 1. This implies that the optimization is repeated with new measurements each 0.2 s to
close the control loop. The proof of closed loop stability of a nonlinear and constrained system solved by
a model predictive controller is beyond the scope of this work and is quite complicated as JOCP has to be
a local Lyapunov function. There are some theoretical approaches [26] and practical recommendations
[27], but the following results will show, that there is no stability problem in this case.
The NMPC controller needs the full state vector x0 at the start of the optimization horizon. Only the rotor
speed Ω, the tower fore-aft-acceleration ẍT , the pitch angle θ and the pitch rate θ̇ can be considered as
measurable signals. Therefore an estimator has to be implemented to reconstruct ẋT and xT .

 

x0

u0 ui

s0
si

sK

si+1

Tf

Figure 15: Principle of the direct multiple shooting method: x0 is the initial point from the current mea-
surement, si are the starting points for the nonlinear simulations which have to coincide with
the final point of each simulation by changing the projected control imputs ui over the K
control steps up to the final time Tf .

ẍT

θ,Ω

x̂T , ˆ̇xT

θ̇

θc,Mg

v0(t0..t0 + Tf )

nonlinear
estimator

3D stochastic
wind field

full aeroelastic
turbine model

LIDAR

NMPC
controller

Figure 16: Closed loop NMPC.
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6.2 Simulation Results

The most important benefits for the presented control may lie in the reduction of extreme loads in gust
events. High load reduction can be also observed for fatigue loads. Both cases will be investigated in
this subsection. A realistic reduction with the full aeroelastic model and simulated LIDAR measurements
are shown for the extreme and subsequently for the fatigue loads. At the end of this section some con-
siderations regarding the applicability of the NMPC in real time are presented. The NMPC is compared
to the baseline controller [16] which has no information of the approaching wind.

6.2.1 Extreme Loads

In the time domain the different control strategies are compared with their reaction to gusts. Therefore
hub-height time series are created with extreme operation gusts (EOG) according to current standards
[21] at vrated + 2 m/s = 13.2 m/s and vout = 25 m/s. Here the NMPC is used with the same parameters
as in the detailed fatigue analysis (see Section 6.2.2). Figure 17 and Table 3 depict that with realistic
conditions the load reduction is significant. Along with the wind speed the LIDAR estimation is plotted
in the top part of Figure 17, which shows the spatial and temporal filtering effect depending on the
wind speed of the LIDAR simulation: for low wind speeds the cut-off frequency of the applied filter (32)
increases and the gust is smoothed by the measurement volume (18) and the applied filter.

EOG 13.2 m/s EOG 25 m/s
MyT [MNm] ∆Ω [rpm] MyT [MNm] ∆Ω [rpm]

Baseline 129 2.34 99 3.01
NMPC 63 0.57 36 0.29
NMPC/Baseline [%] 49 24 36 10

Table 3: Maximum values of Figure 17.
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Figure 17: Simulation with aeroelastic model. Top: wind speed (black), LIDAR estimated rotor effective
wind speed (gray). Below: pitch angle demand, generator torque, rotor speed and tower
base fore-aft bending moment for baseline controller (gray) and NMPC (black).
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Figure 18: Distribution of lifetime weighted DEL of the tower base fore-aft bending moment (a) and the
low-speed shaft torque (b), weighted standard deviation for pitch rate (c) and EP (d) for the
baseline controller (gray) and NMPC (black) over the considered bins.

6.2.2 Fatigue Loads

To estimate the benefit for fatigue load reduction, various simulations with a set of turbulent TurbSim
wind fields are conducted, featuring A-type turbulence intensity according to IEC 61400-1 [21] and a
Rayleigh distribution with C = 12 m/s.
The NMPC coupled to the LIDAR simulator and the nonlinear estimator is tuned to have high load re-
duction on tower and blades together with low pitch activity and slightly improved energy production
(EP). A larger power oscillation is tolerated in the partial load region.
Over all simulations the NMPC stabilizes the system and leads to satisfying control performance: Dam-
age equivalent loads (DEL) are calculated based on a rainflow counting with Wöhler exponent of 4 and
10, typical for steel and composite material [28]. The distribution of the lifetime weighted DEL (20 years
with Rayleigh distribution (C = 12 m/s), reference number of cycles 2 ∗ 106) of the tower base fore-aft
bending moment and the low-speed shaft torque are shown in Figure 18(a) and 18(b), respectively. The
loads for the tower are reduced not only for high wind speeds, but also for simulations with mean wind
speeds of 4 and 6 m/s by limiting the rotor speed. Therefore less energy capture (see Figure 18(d))
is tolerated for these wind speeds. The loads on the low speed shaft are only reduced for high wind
speeds.
For lower wind speeds the shaft loads are increased due to the improved λopt-tracking and limiting the
rotor speed at lower wind speeds. The pitch activity (see Figure 18(c)) decreases for all wind bins except
for 8 m/s, where the slight increase is beneficial to achieve the optimization criteria.
Figure 19 and Table 4 summarize the results for all 33 simulations. For the LIDAR assisted NMPC the
possible reduction of tower and blade DEL can be estimated to approximately 30 % and 10 %, respec-
tively. The standard deviation of the pitch rate and the rotor speed are decreased to circa 30 % and
10 %. Furthermore, the energy production can be increased slightly by 0.30 %, but also the standard
deviation of the power is increased by approximately 7 %.
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Figure 19: Overall improvement for the NMPC with respect to the baseline: Lifetime weighted DEL
for tower base fore-aft bending moment MyT , out-of-plane blade root bending moment of
blade 1 Moop1 and low-speed shaft torque MLSS , lifetime energy production, lifetime weighted
standard deviation of pitch rate, rotor speed and electrical power.

DEL(MyT ) DEL(Moop1) DEL(MLSS) EP σ(θ̇) σ(Ω) σ(Pel)
[MNm] [MNm] [MNm] [GWh] [◦/s] [rpm] [MW]

Baseline 87.66 12.87 2.89 548.42 0.46 0.59 0.52
NMPC 62.35 11.37 2.87 550.05 0.32 0.53 0.55
NMPC/Baseline [%] 71.13 88.35 99.01 100.30 70.19 89.72 106.44

Table 4: Overall performance with K = 50 stages, repeating optimization after KFF = 1 stage.

6.2.3 Considerations for Real Time Application

The NMPC previously presented was not capable of running in real time on the author’s PC (single core
2.19 GHz). The 10 min-simulations need approximately 1 h to run. It should be possible to reduce the
computing time, e.g. by the usage of higher clock rate or improvement of the software communication,
but the main issues for real time applications will remain. It is beyond the scope of this work to present
an implementation which is applicable in real time. But some considerations and analysis will be pre-
sented in the remainder of this section. Two steps are introduced to reduce the time needed for the
optimization below the allotted time: On the one side the computational effort is reduced and on the
other side the allotted time is extended.
In the first step the computational effort to solve the nonlinear program (42) can be decreased by reduc-
ing the stages K. Here this is achieved by a shorter prediction horizon Tf = 5.6 s, resulting in K = 28
stages. In the second step the allotted time is extended by increasing the number of control steps
KFF = 4 applied to the system after each optimization. Table 4 summarize the results for the modified
NMPCRT . Compared to Table 4, the loads on the shaft increases as well as the standard deviation of
the the rotor speed and the power. The standard deviation of the pitch rate can be further reduced. The
new implementation has a small effect on the load reduction on the tower and blades.
This analysis shows that the aforementioned restrictions do not have a strong impact on the given im-
plementation. Therefore the application of the presented approach on real systems is worth considering
because a supervisory control could be designed which can switch to the baseline controller for the rare
cases in which the solution is not found in the allotted time slot, improving the robustness of the control
strategy. A supervisory control could also avoid applying suboptimal solutions of local minima, e.g. if
the value of the cost function is far away from the range of previous minima.

DEL(MyT ) DEL(Moop1) DEL(MLSS) EP σ(θ̇) σ(Ω) σ(Pel)
[MNm] [MNm] [MNm] [GWh] [◦/s] [rpm] [MW]

Baseline 87.66 12.87 2.89 548.42 0.46 0.59 0.52
NMPCRT 62.82 11.37 2.90 549.44 0.29 0.58 0.57
NMPCRT /Baseline [%] 71.66 88.34 100.34 100.19 64.14 98.56 110.11

Table 5: Overall performance with K = 28 stages, repeating optimization after KFF = 4 stages.
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7 LIDAR Assisted Cyclic Pitch Control

The block diagram in Figure 20 illustrates the used feedforward control schema for the cyclic pitch
control problem. More details can be found in [5] and [6]. The collective pitch controller (see Figure 7)
is extended by two additional control loops: The flapwise blade root bending moments of the three
blades M123 are transformed by the Coleman transformation Tc into a horizontal and vertical blade root
bending moment, MH and MV , also considered as yaw and tilt moment. Those signals are feed back
into two additional feedback controllers ΣH,FB and ΣV,FB. Here standard PI controllers are used following
[28]. The horizontal and vertical blade root bending moment MH and MV are mainly disturbed by the
horizontal and vertical shear δH and δV . The horizontal and vertical shear can also be measured by a
LIDAR system (see Section refsec:WindReconstruction). Those signals (δHL and δV L) can be used to
calculate the feedforward updates θH,FF and θH,FF for the horizontal and vertical control loop. Here also
static functions are proposed, which can be obtained from simulations or from modeling:

θH,FF = gHδHL (43)

θV,FF = gV δV L

Furthermore, the same filter 32 is used to avoid wrong pitch action. Also the time tracking issue is solved
similar to the collective pitch feedforward controller: The feedforward update is added to the feedback
with the prediction time τ before the shears reach the turbine, considering the time shift from the filter
and the reconstruction method.
To demonstrate the benefit of LIDAR assisted cyclic pitch control, a collective pitch feedback only con-
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Figure 20: Cyclic pitch feedforward control: The feedforward controllers try to compensate the effects
of the wind field V to the rotor speed Ω and the horizontal and vertical blade root bending
moments, MH and MV .

troller is compared to a cyclic pitch feedback only controller and a combined collective and cyclic feed-
back and feedforward controller. A wind field with mean wind speed ū = 16 m/s and a turbulence
intensity of 18% is used. Figure 21 shows the power spectral densities of pitch rate and out-of-plane
blade root bending moment of blade 1. Both individual pitch controllers decrease variation of the blade
root bending moment especially at the 1P frequency, but only the feedforward controller can reduce the
loads around 0.1 Hz due to the collective feedforward part. Further investigations have to be done to
investigate, whether similar load reduction can be obtained without the cyclic feedforward part. A vali-
dation of the LIDAR reconstructed rotor effective wind characteristics can be achieved by comparing to
those estimated from turbine data. Figure 22 compares the shears obtained from model (6) with shears
obtained by a zero-order estimation from blade root bending moment, showing as expected a better
correlation for δV than for δH . Therefore further investigations have to be done to investigate, if the
correlation between the LIDAR measurement and the turbine reaction regarding the shears is sufficient
to use it for feedforward control.
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8 LIDAR Assisted Yaw Control

Yaw control is usually done by active yaw control. Due to the large moment of inertia of the rotor about
the yaw axis, the nacelle is aligned with the wind with slow rates and only, if the misalignment exceeds
a certain value [29]. The demand signal is normally calculated from a nacelle mounted wind vane or
sonic anemometer. There are mainly two disadvantages for these sensors: Firstly the signal is heavily
disturbed for a operating turbine, e.g. by passing blades and therefore must be averaged over a certain
time [19]. Secondly these sensors are measuring at one single point therefore are unable to detect
changes over the rotor disc.
A nacelle mounted LIDAR system avoids these disadvantages, being able to measure the undisturbed
inflow over the entire rotor area. Therefore using LIDAR technology has been proposed in literature for
yaw control and the presented improvement in energy yield are promising and far exceed the estimated
looses of 1 to 2% due to standard yaw control [29]. The first part of this section shows the capability
and the problems of a simulated LIDAR system to capture the wind direction. In the second part data is
analysed and finally in the third part the conditions for improvements in energy yield by LIDAR assisted
yaw control are discussed theoretically. More details can be found in [3].

8.1 Simulation Using Generic Wind

The scope of the presented simulation study is to test if the methods presented in Section 2 are robust
and can be applied to turbulent wind fields. This is not obvious, because the simulation model of the
wind (here IEC Kaimal [21]) and of the LIDAR ((17) and (18)) are more complex than the used design
wind (12) and LIDAR model (1). Similar work has been presented [30], using an empiric reconstruction
method and Mann turbulence.
The 33 Class A wind fields from section 5 are generated with a horizontal mean flow angle of αH =
10 deg. The 10 min-wind fields are scanned again with the mentioned LIDAR simulator, imitating the
SWE-LIDAR system [7] using a Lissajous-like trajectory.Only the third measurement plane in 116 m is
used, scanning a regular 87 m by 87 m grid with n = 49 focus points. The misalignment detected by the
LIDAR α̂HL is estimated with the model (12) using those focus points from the last n points, where no
impact with the turbine blades is simulated. Due to the positioning on top of the nacelle, similar to the
one used in the experiment, this usually results in a loss of ≈ 30%.
The resulting α̂HL signal is very oscillating and for better illustration a 1 min running average is used in
Figure 23. For comparison, the misalignment signal of a point measurement is plotted, which could be
obtained from a sonic anemometer on hub height neglecting the disturbance of an operating turbine.
Initially it seems that no advantage is gathered by the averaging over the rotor disc. But the reason
for this effect can be observed in the running average of the effective horizontal shear from the wind
field: The misalignment signal estimated with the LIDAR is disturbed by the horizontal shear, due to the
effects described in Section 2.
However, Figure 24 shows that for all 33 simulations the error of the misalignment estimation in the
10 min mean is below 1 deg due to the fact that the mean of the effective horizontal shear for the wind
field is close to zero. In the mean absolute error over the used 3 seeds a better estimation can be
observed for higher wind speeds where the turbulence intensity of the wind fields is lower.
The results of this simulation study show that with the proposed method of wind reconstruction it is
possible for a simulated LIDAR to estimate the misalignment of a turbine in the scale of 10 min similar
to the simulated undisturbed sonic anemometer. An important requirement is that there is no constant
horizontal shear, which is difficult to guarantee in complex terrain.

8.2 Simulation Using Real Data

From the simulation study above it is hard to estimate the improvement of LIDAR assisted yaw control
compared to the standard yaw control: On one hand it is hard to model the disturbance which a nacelle
mounted anemometer will experience in real conditions. On the other hand it is difficult to estimate the
real wind direction in real experiments to evaluate the improvements.
Therefore, a simulation study is presented here using data from a real experiment: A scanning LIDAR
system was developed and installed on a 5 MW wind turbine measuring the wind inflow. In the following
investigation it is assumed that the LIDAR system is able to estimate the 10 min misalignment. This
assumption is reasonable, considering the simulation study above and the location (flat terrain) where
no constant horizontal shear is expected. Data sets of at least 4 h are selected from almost 5 months
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of measurement using only data with Lissajous-like trajectory and 50% of data availibility and data with
the turbine in normal operation. By this procedure a total of 223 h is analyzed and the misalignment
detected by the LIDAR α̂HL is again estimated using model (12).
In a first step the overall average is calculated: in the period of the 223 h an average misalignment of
only 0.7 deg is detected. This shows, that no significant static misalignment can be detected. But this
number is no indication, whether LIDAR assisted yaw control can reduce the fluctuation of the misalign-
ment.
Therefore the basic idea of the second step is to analyze, how the wind direction tracking can be im-
proved by the LIDAR compared to the sonic anemometer if the same yaw control strategy is applied, and
if the LIDAR is able to perfectly estimate the misalignment. Therefore the absolute yaw direction signal
γT is superposed with the relative, 10 min averaged misalignment signals from the nacelle mounted
LIDAR and sonic anemometer to the absolute wind direction signals γL and γS from LIDAR and sonic
anemometer, respectively. The assumed real wind direction γ is equal to γL, but 5 min shifted back in
time, due to the assumption of the perfect LIDAR measurement and the delay of a 10 min average. Then
following yaw control [29] is applied to γL and γS : The turbine yaws, if the absolute 10 min averaged
misalignment is above 10 deg. Starting for both instruments with no misalignment, the simulated turbine
directions γTL and γTS are obtained. Figure 25 shows an extreme example of this method for better
illustration.
With this method it can be simulated, how the turbine would have been yawed for both instruments. Fi-
nally, the resulting yaw misalignment for both instruments can be calculated by comparing the simulated
turbine positions with the wind direction:

αHL = γ − γTL

αHS = γ − γTS . (44)

Due to the average time and the threshold in the control strategy, the difference in the fluctuation of
both signals over the 223 h of data is relatively low: In this case the sonic anemometer assisted yaw
control would have been achieved a standard deviation of σ(αHS) = 6.4 deg and the LIDAR assisted
yaw control despite of the perfect measurement a standard deviation of σ(αHS) = 4.1 deg.
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Figure 26: Power loss due to static (a) and dynamic (b) misalignment.

8.3 Discussion

Both studies above show, the yaw misalignment can be divided in a static and a dynamic subproblem.
In reality there will be a mixture of both, but this perception is helpful to rate the benefits which can be
achieved by using a LIDAR system for yaw control.
If there is a static misalignment ᾱH , the loss in power can be modeled as [19]:

Pel(ᾱH) = Pel,max cos
3(ᾱH). (45)

Figure 26(a), shows e.g. that ≈ 10% of power is lost, if the turbine is misaligned by ≈ 15 deg to one
side. This value can be considered as a lower bound, because a misalignment in full load operation
will not have an effect on the power. Such a static misalignment could be caused by a miscalibrated
anemometer or if the hub height wind direction has an offset compared to the rotor effective wind
direction due to a very inhomogenious inflow e.g. in complex terrain. A static misalignment can be
solved by better calibration of the standard nacelle anemometer and does not need a constant use of a
LIDAR system. In the case of investigated data the detected static misalignment of 0.7 deg only would
cause a power loss of 0.02%. This low value can be due to the fact that the considered turbine is a well
calibrated prototype in flat terrain.
A constant use of a nacelle mounted LIDAR system is justified, if the fluctuation of yaw misalignment can
be reduced. Similar to the discussion in Section 5.4 the misalignment can be assumed to be Gaussian
distributed with zero mean and a standard deviation σ(αH). Then the loss in power can be modeled by:

Pel(σ(αH)) = Pel,max

∫
∞

−∞

ϕ0;σ(αH) cos
3(αH)dαH . (46)

The loss in power due to the dynamic misalignment is plotted in Figure 26(b) and again is only applicable
to partial load operation. The reduction of σ(αH) and therefore an improvement of the power output is
limited to the control strategy: a reduction to 0 deg would require immediate yawing of the rotor which is
neither feasible nor reasonable due to the induced loads. In the presented investigation a reduction from
6.4 deg to 4.1 deg yield to an improvement from 99.3%−98.2% = 1.1% using (46). This low value despite
of assumed perfect reconstruction of the alignment by the LIDAR system can be due to the location but
still gives an estimation of improvement which can be expected.
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9 Conclusion and Outlook

In this work a method is presented to reconstruct wind characteristics based on LIDAR measurements
and shortcomings are shown. This method is used in various approaches to increase the energy produc-
tion and to reduce loads of wind turbines: Collective pitch feedforward control and direct speed control
uses the knowledge of the incoming wind speed to calculate a control update to existing feedback con-
trollers. Collective pitch feedforward control is a promising strategy to reduce extreme and fatigue loads.
Filtering the LIDAR signal is an important issues, because not all turbulences can be measured. With
the direct speed control only marginal benefit can be gained. This is due to the fact that the standard
variable speed control is already close to the aerodynamic optimum. The approach of the Nonlinear
Model Predictive Control differs from the feedforward approaches: the future behavior of a wind turbine
is optimized by solving an optimal control problem repetitively using the wind speed preview adjusting
simultaneously the pitch angle and the generator torque. Therefore loads on tower, blades and shaft
cab be further reduced especially for for wind conditions near rated wind speed. Further load reduction
of the blades can be gained with cyclic pitch feedforward control, extending the feedforward approach
to reduce also tilt and yaw moments of the rotor. Another approach uses the wind direction estimation
by a LIDAR system for yaw control. Here an increase of energy production by a couple of percent can
be expected, depending on the control strategy and the inhomogeneity of the wind.

Acknowledgment

This research is funded by the German Federal Ministry for the Environment, Nature Conservation and
Nuclear Safety (BMU) in the framework of the German joint research project ”LIDAR II - Development
of nacelle-based LIDAR technology for performance measurement and control of wind turbines” (FKZ
0325216B). Thanks all the people getting the LIDAR systems and the different measurement campaigns
working, special thanks to the Andreas Rettenmeier, Martin Hofsß̈, Jan Anger, Ines Wr̈th and Oliver
Bischoff of the SWE Lidar group, my supervisors Po Wen Cheng, Martin Kühn and Lucy Pao and my
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“Prospects of optimization of energy production by LiDAR assisted control of wind turbines,” in
Presentation at EWEA, 2011.

[4] D. Schlipf, D. J. Schlipf, and M. Kühn, “Nonlinear model predictive control of wind turbines using
LIDAR,” Accepted for Wind Energy Journal, 2012.

[5] F. Dunne, D. Schlipf, L. Y. Pao, A. D. Wright, B. Jonkman, N. Kelley, and E. Simley, “Comparison
of two independent lidar-based pitch control designs,” in Proc. 50th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, 2012.
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