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1 Introduction

Turbulence is the chaotic, ever-changing, three-dimensional nature of a fluid flow. If say we are in a
dream world, where we had infinite computing power, and the initial and boundary flow conditions
were perfectly known then the fluid flow can be mathematically solved using the time domain
Navier-Stokes (NS) equations, and hence we could mathematically capture turbulence perfectly.
Life would be much simpler and we would never need to measure any flow using any instrument,
leave aside using complicated instruments such as lidars. In this dream world when we would for
example design wind turbines then we can perfectly determine the loads, and the safety factors
that influence how much extra material should be used for manufacturing different wind turbine
components will be drastically reduced, resulting in the cheapest wind turbine that can ever be
produced.

Unfortunately, we live in a real world, where none of the above requirements are fulfilled, and we
are forced to understand turbulence using different techniques. In our imperfect world then the need
for measurements is inevitable. A practical way to measure turbulence is to have an instrument
like sonic anemometer installed on a meteorological mast at different points in space (usually in the
vertical direction). They are currently the best available instruments to measure turbulence with
some caveats attached. Tall meteorological masts are required in order to measure high up in the
atmosphere, which increase the cost of measurement, particularly under offshore conditions. Flow
distortions from the mast and the sonics have also to be taken into account rendering them unusable
under certain wind directions. As an alternative, wind lidars offer a tremendous opportunity for
measuring wind remotely. These lidars do not need a mast and we do not have to worry about flow
distortions.

However, there are other problems that arise by the use of lidars to measure turbulence, par-
ticularly using the velocity azimuth display (VAD) technique. These problems are discussed in the
following sections for the continuous-wave (CW) and pulsed lidars.

2 Measurement of turbulence using VAD technique

Fig. 1 shows the lidar emitting the laser beam at different azimuth angles θ. The azimuth angles
increase from 0◦–360◦ in the clockwise direction as for the geographical convention. The line-of-
sight velocity (also called radial velocity vr) is measured by the lidar at each azimuth angle. The
half-opening angle φ (= 90◦ − elevation angle) is kept constant throughout the scan. The CW
and pulsed lidars work on the principle of backscattering of the emitted radiation, and subsequent
detection of the Doppler shift in the frequency of the received radiation. The Doppler shift in the
frequency is related to vr by,

δf = 2
vr
λ
, (1)

where f and λ are the frequency and wavelength of the emitted radiation. Mathematically, vr is
given as the dot product of the unit directional vector and the velocity field at the point of focus
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Figure 1: Schematic of the velocity azimuth display scanning

for a CW lidar, and the center of the range gate (Lindelöw, 2007) for the pulsed lidar,

vr(θ) = n(θ) · v(dfn(θ)), (2)

where df is the focus distance for the CW lidar or the distance to the center of the range gate for
the pulsed lidar at which the wind speeds are measured, v = (u, v, w) is the instantaneous velocity
field evaluated at the focus point or the center of the range gate dfn(θ), and n(θ) is the unit
directional vector given as,

n(θ) = (cos θ sinφ, sin θ sinφ, cosφ). (3)

In practice it is impossible to obtain the backscattered radiation precisely from only the focus point,
and there is always backscattered radiation of different intensities from different regions in space
along the line-of-sight. Hence, it is necessary to assign appropriate weights to the backscattered
intensity such that the weight corresponding to the focus point or the center of the range gate is
the highest. Mathematically, the weighted average radial velocity can be written as,

ṽr(θ) =

∫ ∞
−∞

ϕ(s)n(θ) · v(sn(θ) + dfn(θ)) ds, (4)

where ϕ(s) is any weighting function, integrating to one, and s is the distance along the beam from
the focus or the center of the range gate. For simplicity we assume that s = 0 corresponds to the
focus distance or center of the range gate.

2.1 Reynolds stress tensor measurements

Mathematically, the Reynolds stress tensor Rij can be represented as a 3×3 matrix of second-order
statistics of wind field components,

Rij =

 〈u′2〉 〈u′v′〉 〈u′w′〉
〈v′u′〉 〈v′2〉 〈v′w′〉
〈w′u′〉 〈w′v′〉 〈w′2〉

 (5)
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In this section, we first present modelling of the components of Rij as measured by a scanning lidar,
and then we compare our model with the measurements. Modelling will help us in understanding
roughly the mechanism of measurement of Rij using lidars under VAD technique. Any model
is normally build on a certain set of assumptions. This is not a strict requirement but rather
our inability to construct an exact model without making use of any assumptions. Thus, the
assumptions then become quite central in developing a model. Following are the main assumptions
of our model:

1. Turbulence is horizontally homogeneous within the scanning area – This means that Rij
remains constant on any point on a scanning circle. Without this assumption the mathematics
becomes quite complex, and we currently do have tools to tackle such a problem.

2. The flow field is frozen during the scan – This means that turbulence is advected only by
the mean flow. This gives a direct connection between the spatial and temporal scales of
turbulence. Without this assumption, we will have to take care of space-time correlations,
and again the mathematics become quite complex, which we are not able to handle it currently.

3. Eq. (4) with an appropriately chosen ϕ(s) models the averaging well – This assumption
directly influences the amount of averaging of turbulence scales that occurs within the sample
volume of a lidar measurement. The choice of ϕ(s) then becomes very important. Fortunately,
studies have been carried out previously to model ϕ(s) for CW and pulsed lidars, and in our
model we simply use the results from such studies.

4. The spatial structure of the turbulent flow is described well by the spectral tensor model of
Mann (1994) – At this stage it is quite difficult to explain the significance of this assumption
but its importance will become more prominent as we develop our model and make compar-
isons with the measurements. For now, it is just important to know that this assumption is
quite central while making comparisons of the theoretical calculations with the measurements.

At this point we would like to reiterate that the modelling carried out in this section only helps to
understand the measurement of Rij by lidars using the VAD technique.

2.1.1 Modelling of Rij for the CW lidar

In our study we have used the ZephIR (manufactured by Natural Power) as a CW lidar. Thus to
construct a model it is necessary to know the exact measurement technique used by the ZephIR.
The ZephIR transmits the laser beam through a constantly rotating prism, giving the required half-
opening angle of nominally 30◦. Each of up to five heights are scanned for one or three seconds,
corresponding to one or three complete rotations of the prism. The beam is then re-focused to the
next height in the sequence and the scanning procedure is repeated. Up to five different heights
can be selected, the sequence (with five heights and three second scans) taking up to 18 seconds
to complete. Thus the lidar spends less than 20% of the time required to make a wind profile on
any one of the five heights. A typical scan at each height consists of 50 measurements of vr on
the azimuth circle. If we assume the coordinate system such that u is aligned to the mean wind
direction, v is perpendicular to the mean wind direction, w is the vertical component, and the mean
wind comes from the North then ṽr(θ) can be expressed as,

ṽr(θ) = A+B cos θ + C sin θ, (6)

where the coefficients A = wqq cosφ, B = uqq sinφ and C = vqq sinφ and the sign ambiguity
in ṽr(θ) is neglected (see Mann et al. (2010)). We use the subscript qq to denote the velocity
components measured by ZephIR, since they are not the true velocity components u, v and w.
The assumption that the mean wind comes from the North is only made for simplicity. For a lidar
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measuring at many points on the azimuth circle the choice of the mean wind direction does not
matter since averaging over the entire circle is carried out. The values of the coefficients A, B and
C are found using least squares method by fitting Eq. (6) to the measured values of ṽr(θ) at all
scanned azimuth angles. The coefficients can be written as Fourier integrals,

A =
1

2π

∫ 2π

0
ṽr(θ) dθ, (7)

B =
1

π

∫ 2π

0
ṽr(θ) cos θ dθ, (8)

C =
1

π

∫ 2π

0
ṽr(θ) sin θ dθ. (9)

We proceed by deriving expressions for the wqq variance. The expressions for the (co-) variances of
the remaining components of wind velocity can be derived in a similar manner.

The variance of A is defined as σ2
A = 〈A′2〉, where 〈〉 denotes ensemble averaging of a variable.

From the above definition of A we can write,

σ2
A = 〈w′2qq〉 cos2 φ. (10)

Using Eq. (7) we can also write,

σ2
A =

〈(
1

2π

∫ 2π

0
ṽ′r(θ) dθ

)2
〉
. (11)

Substituting ṽr(θ) from Eq. (4) into Eq. (11), converting the square of the integral into a double
integral, interchanging the order of integration and averaging we get,

σ2
A =

1

4π2

∫ 2π

0

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞
〈v′i(s1n(θ1) + dfn(θ1))v′j(s2n(θ2) + dfn(θ2))〉

ϕ(s1)ϕ(s2)ni(θ1)nj(θ2) ds1ds2dθ1dθ2,

=
1

4π2

∫ 2π

0

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

Rij(r)ϕ(s1)ϕ(s2)ni(θ1)nj(θ2) ds1ds2dθ1dθ2, (12)

where 〈v′i(s1n(θ1) +dfn(θ1))v′j(s2n(θ2) +dfn(θ2))〉 = Rij(r) is the covariance tensor separated by
a distance r = (s1n(θ1) + dfn(θ1)) − (s2n(θ2) + dfn(θ2)) and is related to the three dimensional
spectral velocity tensor Φij(k) by the inverse Fourier transform,

Rij(r) =

∫
Φij(k)eik·r dk, (13)

where
∫
dk ≡

∫∞
−∞

∫∞
−∞

∫∞
−∞ dk1dk2dk3, k = (k1, k2, k3) denotes the wave vector and the subscripts

i, j take the values from 1 to 3. Inserting Eq. (13) into Eq. (12) we get,

σ2
A =

∫
Φij(k)

(∫ ∞
−∞

ϕ(s1)

[
1

2π

∫ 2π

0
ni(θ1)ei(s1+df )k·n(θ1) dθ1

]
ds1

)
(∫ ∞
−∞

ϕ(s2)

[
1

2π

∫ 2π

0
nj(θ2)e−i(s2+df )k·n(θ2) dθ2

]
ds2

)
dk.

(14)

Let αi(k) =
(∫∞
−∞ ϕ(s)

[
1

2π

∫ 2π
0 ni(θ)e

i(s+df )k·n(θ) dθ
]
ds
)

, which physically represents the line-of-

sight and conical averaging. Eq. (14) can then be written as (using Eq. 10),

〈w′2qq〉 cos2 φ =

∫
Φij(k)αi(k)α∗j (k) dk, (15)
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where ∗ denotes complex conjugation. Thus the integral reduces to evaluating αi(k), since the
analytical expressions for Φij(k) are given in Mann (1994). Eq. (15) can then be estimated nu-
merically. For a CW lidar, ϕ(s) is well approximated by a Lorentzian function (Sonnenschein and
Horrigan, 1971),

ϕ(s) =
1

π

l

l2 + s2
, (16)

where l is the Rayleigh length (= λbd
2
f/πr

2
b , where λb = 1.55 µm is the wavelength of the emitted

radiation, and rb = 19.5 mm is the beam radius). An attempt has been made to obtain analytical
expressions for αi(k). However, no general analytical solution exists for αi(k) and at most the
integral can be reduced (by integrating over s) to

αi(k) =
1

2π
eidfk3 cosφ

∫ 2π

0
ni(θ + θ0) eidfkh sinφ cos θ e−l|kh cos θ sinφ+k3 cosφ| dθ, (17)

where kh =
√
k2

1 + k2
2 is the magnitude of the horizontal wave vector, cos θ0 = k1/kh, sin θ0 = k2/kh,

and ni(θ+θ0) is the component of the unit directional vector obtained from Eq. (3). Thus numerical
integration has to be applied also for the evaluation of αi(k).

A similar approach is taken for deriving uqq and vqq variances, where we obtain,

〈u′2qq〉 sin2 φ =

∫
Φij(k)βi(k)β∗j (k) dk, (18)

〈v′2qq〉 sin2 φ =

∫
Φij(k)γi(k)γ∗j (k) dk. (19)

The corresponding β and γ functions are,

βi(k) =
1

π
eidfk3 cosφ

∫ 2π

0
ni(θ + θ0) cos(θ + θ0)

eidfkh sinφ cos θ e−l|kh cos θ sinφ+k3 cosφ| dθ,

(20)

γi(k) =
1

π
eidfk3 cosφ

∫ 2π

0
ni(θ + θ0) sin(θ + θ0)

eidfkh sinφ cos θ e−l|kh cos θ sinφ+k3 cosφ| dθ.

(21)

The derivation of the co-variances is merely a combination of the weighting functions αi(k), βi(k),
γi(k) and their complex conjugates used with Φij(k). Since the ZephIR scans three circles in
approximately three seconds, there will be a low-pass filter effect in turbulence measurements. We
assume a length scale Lf = 〈u〉×3s such that it represents the three seconds averaging. We assume
that the ZephIR scans a circle infinitely fast for three seconds. We model the corresponding filtering
effect by a simple rectangular filter, such that,

f(x) =

{
1
Lf

for |x| < Lf

2 ;

0 elsewhere,
(22)

where x is the center of the scanning circle and f(x) is any function of x. The corresponding
spectral transfer function is given as,

T̂f (k1) = sinc2

(
k1Lf

2

)
, (23)
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where sinc(x) = sin(x)/x. The variances of uqq, vqq and wqq are given as,

〈u′2qq〉 sin2 φ =

∫
Φij(k)βi(k)β∗j (k)T̂f (k1) dk, (24)

〈v′2qq〉 sin2 φ =

∫
Φij(k)γi(k)γ∗j (k)T̂f (k1) dk, (25)

〈w′2qq〉 cos2 φ =

∫
Φij(k)αi(k)α∗j (k)T̂f (k1) dk. (26)

2.1.2 Modelling of Rij for the pulsed lidar

The assumption made in section 2.1.1 that the mean wind direction comes from the North cannot
be made for the WindCube, since it measures at four azimuth angles only (refer Fig. 1), e.g. North,
East, South and West. In this case the coordinate system is such that u is aligned in the mean
wind direction. Thus,

uwc = uNS cos Θ + uEW sin Θ, (27)

vwc = uNS sin Θ− uEW cos Θ, (28)

where uNS and uEW denote wind speeds in the North-South and East-West directions respectively,
Θ denotes the wind direction, and the subscript wc denotes the velocity components measured by
WindCube. From simple geometrical considerations (refer Fig. 1),

uNS =
ṽrN − ṽrS

2 sinφ
, (29)

uEW =
ṽrE − ṽrW

2 sinφ
, (30)

where ṽrN , ṽrS , ṽrE , ṽrW are the weighted average radial velocities in the North, South, East and
West directions respectively. For the w component,

wwc =
P (ṽrN + ṽrS) +Q(ṽrE + ṽrW )

2 cosφ
, (31)

where P and Q are the weights associated with the wind direction such that P +Q = 1. Leosphere
uses P = cos2 Θ and Q = sin2 Θ, and hence, we use the same in our calculations.

We proceed by deriving expressions for the uwc variance. The expressions for the (co-) variances
of the remaining components of wind velocity can be derived in a similar manner. Substituting
Eqs. (29), (30) into Eq. (27) we get,

uwc =
1

2 sinφ
[(ṽrN − ṽrS) cos Θ + (ṽrE − ṽrW ) sin Θ]. (32)

We define unit vectors in the four directions as,

nN = n(−Θ),

nS = n(π −Θ),

nE = n(
π

2
−Θ),

nW = n(
3π

2
−Θ),

(33)

where nN , nS , nE and nW are the unit directional vectors in the North, South, East and West
directions respectively. From Eq. (4), for the North direction,

ṽrN =

∫ ∞
−∞

ϕ(s)nN · v(snN + dfnN ) ds. (34)
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To further simplify the notation we define the translation operator Tδ acting on any scalar or vector
field ξ(x),

Tδξ(x) = ξ(x+ δ). (35)

We also define a convolution operator Cn acting on any scalar or vector field as,

Cnv(x) =

∫ ∞
−∞

ϕ(s)n · v(x+ ns) ds. (36)

For the North direction, Eq. (34) can be written as,

ṽrN = CnNTdfnN
v. (37)

We get similar expressions for South, East and West directions. Eq. (32) can then be written as,

uwc =
1

2 sinφ
[(CnNTdfnN

− CnSTdfnS
) cos Θ + (CnETdfnE

− CnW TdfnW
) sin Θ]v (38)

We also know that by definition,

〈u′2〉 =

∫
〈û(k)û∗(k)〉dk, (39)

whereˆdenotes Fourier transform and ∗ denotes complex conjugation. In the Fourier space we have,

T̂δv(k) = eik·δv̂(k), (40)

Ĉnv(k) = ϕ̂(n · k)n · v̂(k), (41)

where ϕ̂(k) = sinc2(klp/2), considering that the weighting function for a pulsed lidar is commonly
defined as,

ϕ(s) =

{
lp−|s|
l2p

for |s| < lp;

0 elsewhere,
(42)

where lp is the half length of the ideally rectangular light pulse leaving the lidar assuming the
matching time windowing (= 2lp/c, where c is the speed of light). Thus in Fourier space Eq. (38)
can then be written as,

ûwc(k) =
1

2 sinφ
[(nNe

idfk·nN sinc2(k · nN lp/2)− nSeidfk·nS sinc2(k · nSlp/2)) cos Θ

+ (nEe
idfk·nE sinc2(k · nElp/2)− nW eidfk·nW sinc2(k · nW lp/2)) sin Θ] · v̂(k)

≡ b(k) · v̂(k),

(43)

and the variance (from Eq. 39),

〈u′2wc〉 =

∫
Φij(k)bi(k)b∗j (k) dk, (44)

where we have implicitly used the relation, Φij(k) = 〈v̂i(k)v̂∗j (k)〉. The (co-) variances of other
components can be estimated in a similar manner by first estimating the corresponding weighting
functions ci(k) and ai(k) for vwc and wwc components respectively.
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Figure 2: Location of the Høvsøre met-mast and details of the site. The wind turbines are marked
as circles, light tower as squares and the meteorological masts as diamonds. The meteorological
mast from which the measurements are used is indicated as a dark diamond and the selected wind
direction is also shown.

sonic anemometersonic anemometer

cup anemometercup anemometer

wind vanewind vane

temperature/humidity sensortemperature/humidity sensor

N

(a) Sensor Orientation

  2000   4000   6000   8000

30

210

60

240

90270

120

300

150

330

180

0

(b) Wind Rose

Figure 3: Orientation of the sensors on the meteorological mast and wind rose at 60 m. The
numbers inside the circles are the number of 10-min observations

2.1.3 Comparison of the model with the measurements

The measurements were performed at the Danish National Test Center for Large Wind Turbines
at Høvsøre, Denmark. Figure 2 shows the layout of the test center and the location of the used
reference meteorological (met.) mast, a 116.5 m tall intensively equipped mast located at the
coordinates 56◦26’26” N, 08◦09’03” E, (indicated by a dark diamond in Fig. 2b). The site is about
2 km from the west coast of Denmark. The eastern sector is characterized by flat homogeneous
terrain, and to the south is a lagoon.

Our reference measurements for this study are the sonic anemometer measurements taken at
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40, 60, 80 and 100 m. The measured three-dimensional wind speeds are resolved with a frequency
of 20 Hz and then reduced to the respective 10-min statistics (mean values and standard deviations
or variances). All sonic anemometers are placed on the North booms of the met. mast (Fig. 3a),
resulting in unusable data when the wind is from the south due to the wake of the mast. In com-
bination with the sonic measurements, wind speeds from a ZephIR (coordinates 56◦26’26.9556” N,
08◦09’2.448” E) and a WindCube (coordinates 56◦26’26.0556” N, 08◦09’3.226” E) are used. The
ZephIR is located about 35m North of the met. mast and the WindCube is located about 5m North-
West of the met. mast. Reference and lidar data were collected over two different time periods, for
the WindCube between January and April 2009, and for the ZephIR between April and November
2009. In order to further avoid the influence of the wakes from the wind turbines and the met.
mast on lidar measurements, and inhomogeneities due to the sudden change of roughness (sea-land
transition, see Fig. 2a), only data periods with easterly winds (50◦–150◦) are analyzed. Fig. 3b
shows that although the dominant wind direction is West-North-West, there is also sufficient data
in the chosen directional (eastern) sector. For the ZephIr 5530 data points were used after using
all the filter, whereas for the WindCube 4003 data points were used.

The precision of the sonic anemometer measurements is estimated to be about ±1.5%. From
comparisons with cup anemometers, the mean error of the WindCube in typical flat coastal condi-
tions is within ±0.05 m/s with a standard deviation in mixed shear conditions of about 0.15 m/s.
The corresponding uncertainty for the measurements made with a ZephIR is slightly higher (A
detailed list of different error sources is given in Lindelöw-Marsden (2009)).
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Figure 4: Comparison of the mean wind speed measured by lidars and sonic anemometer

Fig. 4 shows the comparison of the 10-min mean horizontal wind speed (at 100 m) measured
by the ZephIR and WindCube with the sonic anemometer. Data are shown for the easterly winds
(50◦–150◦) and reference mean wind speeds between 4 m/s and 25 m/s. To guarantee repeatable
conditions the data were furthermore filtered with respect to rain (i.e. only 10-min periods with no
precipitation were considered) and the availability of the lidar (i.e. 100% of the fast data within a
10-min period had to be available). The lidar observations agree reasonably well with those of the
sonic anemometer, with coefficients of determination R2 > 0.98, where the data of the WindCube
shows a significantly better correlation than those of the ZephIR. The estimation of Φij using the
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model from Mann (1994) requires three input parameters, αε2/3, which is a product of the spectral
Kolmogorov constant α (Monin and Yaglom, 1975) and the rate of viscous dissipation of specific
turbulent kinetic energy ε2/3, a length scale L and an anisotropy parameter Γ. We use these input
parameters obtained by fitting the sonic anemometer measurements under different atmospheric
stability conditions, at several heights on the meteorological mast in the eastern sector (Peña et al.,
2010). The classification of atmospheric stability (table 1) is based on the Monin-Obukhov length
(LMO) intervals (Gryning et al., 2007).

Table 1: Classification of atmospheric stability according to Monin-Obukhov length intervals

very stable (vs) 10 ≤ LMO ≤ 50 m
stable (s) 50 ≤ LMO ≤ 200 m

near-neutral stable (nns) 200 ≤ LMO ≤ 500 m
neutral (n) | LMO |≥ 500 m

near-neutral unstable (nnu) −500 ≤ LMO ≤ −200 m
unstable (u) −200 ≤ LMO ≤ −100 m

very unstable (vu) −100 ≤ LMO ≤ −50 m

LMO is estimated using the eddy covariance method (Kaimal and Finnigan, 1994) from the
high frequency (20 Hz) measurements at 20 m. Mathematically, LMO is given as,

LMO = − u∗
3T

κgw′θ′v
, (45)

where u∗ is the friction velocity, κ = 0.4 is the von Kármán constant, g is the acceleration due to
gravity, T is the absolute temperature, θv is the virtual potential temperature and w′θ′v (covariance
of w and θv)is the virtual kinematic heat flux. u∗ is estimated as,

u∗ =
4

√
u′w′

2
+ v′w′

2
, (46)

where u′w′ (covariance of u and w) and v′w′ (covariance of v and w) are the vertical fluxes of the
horizontal momentum. For simplicity we define systematic error as the ratio of the lidar to the
true second-order moment. Thus a ratio equal to one would signify no systematic error, whereas
deviations from unity signify systematic error. By definition, the true second-order moment of a
velocity component is given as,

〈v′iv′j〉 =

∫
Φij(k)dk. (47)

The theoretical systematic errors are calculated by taking the ratio of lidar second-order moments
(Eqs. 15, 18, 19 and 43) to the true second-order moment (Eqn. 47). The numerical integration
is carried out using an adaptive algorithm (Genz and Malik, 1980). For experimental comparison,
the second-order moments measured by sonic anemometers are considered to be true second-order
moments. Thus experimentally, the systematic errors are estimated by taking the ratio of the
measured lidar second-order moments to sonic second-order moments.

Fig. 5 shows the comparison of the modelled and measured systematic errors of u, v and w
variances for the CW lidar over 10 minute periods. The theoretical points are shown with and
without the low-pass filter. For the low-pass filter, the model is dependent on the mean wind
speed and the plots are shown for 〈u〉 = 9 m/s at all heights, since this is the mean wind speed at
Høvsøre. The measurements are represented as median (markers), first and third quartiles (error
bars) respectively. We infer the following:

• The systematic errors vary considerably under different atmospheric stability conditions –
The variation is up to 50% for u and v variances, and up to 20% for w variance. This is due
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Figure 5: ZephIR systematic errors under different atmospheric stability conditions in the eastern
sector. The markers indicate measurements. The solid lines are the theory without the low-pass
filter, and the dashed lines are with the low-pass filter.

to a large variation in the length scales of different velocity components resulting in varying
attenuation of the variances.

• The systematic errors increase with height under all atmospheric stability conditions – This is
due to a quadratic increase in the sample volume with height (Lindelöw, 2007). The diameter
of the scanning circle also increases with height.

• The systematic errors in w variance are much larger (approximately 3-5 times) than that of
the u and v variances – This is due to the very small length scales of the w component as
compared to those for u and v, resulting in the attenuation of the w variance of up to 90%.
The u and v variances are attenuated up to 70%.

• There is a significant spread (first and third quartiles) in the systematic errors of u and v
variances – These are the random errors and most likely occur due to the disjunct sampling
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Figure 5: ZephIR systematic errors under different atmospheric stability conditions in the eastern
sector. The markers indicate measurements. The solid lines are the theory without the low-pass
filter, and the dashed lines are with the low-pass filter.

(Lenschow et al., 1994) of the ZephIR. A thorough scientific investigation is needed to quantify
random errors, but is not the focus of this paper.

• The trend of the systematic errors predicted by both models is in agreement with the obser-
vations at all heights.

• With the exception of very stable conditions, the model with the low-pass filter (Eqs. 24–26)
is in better agreement with the measurements at all heights than without the low-pass filter.

In order to quantify the improvement in the model predictions using the low-pass filter, we
compute the root mean square percent errors (RMSPE) between the measured and the modelled
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systematic errors for each stability condition. RMSPE is given as,

RMSPE =

√√√√√√√∑


(
〈v′

i
v′
i
〉lidar

〈v′
i
v′
i
〉

)
measured

−
(
〈v′

i
v′
i
〉lidar

〈v′
i
v′
i
〉

)
modelled(

〈v′
i
v′
i
〉lidar

〈v′
i
v′
i
〉

)
measured

× 100

2

n
, (48)

where median values are used for the measurements.
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Figure 6: Root mean square percent error (RMSPE) in the prediction of the systematic errors for
the ZephIR. The solid line shows the model without the low-pass filter and the dashed line shows
the model with the low-pass filter. See table 1 for the meaning of the abbreviations on the x-axis.

Fig. 6 shows the comparison of the RMSPE in the prediction of the systematic errors with
and without the low-pass filter for the ZephIR. A significant decrease in the RMSPE (of the order
of 30%) of u and w variances is observed under all atmospheric stabilities (except for the very
stable condition for u variance), when the low-pass filtering is used. For the v variance, there is a
slight increase (up to 10%) in the RMSPE under unstable conditions, whereas for stable conditions a
decrease of up to 40% is observed. Thus, in general, using the low-pass filter, the model predicts the
systematic errors better than without using the low-pass filter. We also performed the calculations
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using the beam radius rb = 24 mm, and observed that the RMSPE for all three variance components
changes only slightly (±5%).
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Figure 7: WindCube systematic errors under different atmospheric stability conditions in the east-
ern sector. The markers indicate measurements. The model variation with wind direction is plotted
as dotted line for 0◦, dash-dot line for 15◦, dashed line for 30◦ and solid line for 45◦

Fig. 7 shows the comparison of the modelled and measured systematic errors of u, v and w
variances for the pulsed lidar over 10-min periods. We infer the following:

• The systematic errors vary considerably under different atmospheric stability conditions –
The variation is up to 50% for u and v variances, and up to 20% for the w variance. The
same is also observed for the ZephIR.

• The systematic errors decrease with height for the u and v variances under all atmospheric
stability conditions – For the WindCube, the probe length is constant (Lindelöw, 2007), and
hence, at lower heights there is a combined averaging effect due to the probe length and the
diameter of the scanning circle. Considering that at lower heights the length scales are smaller
than at higher heights, it is likely that the variances are attenuated greater at lower heights
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Figure 7: WindCube systematic errors under different atmospheric stability conditions in the east-
ern sector. The markers indicate measurements. The model variation with wind direction is plotted
as dotted line for 0◦, dash-dot line for 15◦, dashed line for 30◦ and solid line for 45◦

than at higher heights. For w variance, the systematic error is approximately constant, and
is most likely due to the small length scales.

• The systematic error in w variance is much larger (approximately 3-5 times) than that of the
u and v variances. The same is also observed for the ZephIR.

• The spread in the systematic error (first and third quartiles) of the u and v variances is smaller
than that of the ZephIR – This is most likely because the WindCube updates the velocity
vector approximately every 6.5 seconds, whereas the ZephIR updates every 18 seconds.

• The systematic error varies significantly with the wind direction relative to the beam direction
for w variance, and to a lesser degree for u and v variance under all stability conditions.

Fig. 8 shows the comparison of the RMSPE in the prediction of the systematic errors for the
WindCube and ZephIR (with the low-pass filter). It is observed that for u and v variances, with
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Figure 8: Comparison of the root mean square percent error (RMSPE) in the prediction of the
systematic errors for the WindCube and ZephIR. The solid line is for the WindCube and the dashed
line is for the ZephIR with the low-pass filter. See table 1 for the meaning of the abbreviations on
the x-axis.

the exception of the near-neutral stable condition, the RMSPE in both lidars is approximately
equal. There is a considerable variation in the RMSPE for the w variance. This is most likely
because for the WindCube, the w variance is very sensitive to the wind direction due to its cosine
and sine dependence. In general, for both lidars, except for the very stable condition, the model
predicts the systematic errors for u variance reasonably well (RMSPE ≈ 6%), followed by v variance
(RMSPE ≈ 12%). It is difficult to say whether the prediction for the w variance is less reliable or
not (RMSPE of the order of 60%).

We do not model the filtering effect due to the scanning time (≈ 6.5 seconds) of WindCube for
two reasons:

1. Since the measurement is carried out at only four points, each lasting 0.5 seconds on the
scanning circle, we cannot assume that the WindCube measures infinitely fast on the scanning
circle (as we did for the ZephIR). The translations in each direction have to be convolved
with the corresponding spectral transfer function, if the filtering is to be included.
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2. The calculation becomes too cumbersome if the above procedure is followed.

While comparing the performance of our model, the following should also be considered:

• The model is dependent on the three dimensional spectral velocity tensor (Mann, 1994), which
is strictly valid for neutral conditions only. Thus, one has to be careful while comparing under
different atmospheric stability conditions. In this study, we have reduced the uncertainty by
using the the three input tensor parameters that are fitted to the measurements under different
atmospheric stability conditions (Peña et al., 2010).

• While using Eqs. (24)–(26), we have used the same mean wind speed at all heights. In reality,
there is always wind shear, which also depends significantly on atmospheric stability (Motta
and Barthelmie, 2005). However, the calculations will become too cumbersome, and hence,
we made a crude approximation.

• The very stable conditions are generally difficult to analyze. There could be different reasons
for the large deviation in the u and v variances, e.g.,

– Uncertainty in the input tensor parameters

– Lack of validity of the spectral tensor model (Mann, 1994) under different atmospheric
stability conditions

Also, contrary to expectation, the measurements under very stable conditions (Figs. 5 and 7)
show a decrease in the systematic errors for the u and v variances, as compared to the stable
conditions.

There is also some room for reducing redundancy in the ZephIR measurements, which might
reduce the spread of the systematic errors (quartile range). Instead of scanning at several points
on the circle, only four points are required. Reducing the measurement points would increase the
dependence of the second-order moments on the wind direction (refer section 2.1.2). However, it
would considerably reduce the time required for completing a VAD. There is also no need to scan
the circle three times, e.g. in the present configuration, 50 points are scanned in approximately one
second. Thus four points would take only 0.08 seconds. If it measures five heights sequentially,
the next measurement would be after 0.4 seconds, giving a measurement frequency > 2 Hz. Al-
ternatively, at each of the four points the scans can also be performed rapidly at different heights
sequentially before scanning the next point.

2.2 Turbulence spectra measurements

In this section the aim is to explain how a scanning pulsed wind lidar measures turbulence spectra in
combination with the velocity azimuth display (VAD) technique of data processing. In particular, a
theoretical model of the turbulence spectra measured by a pulsed wind lidar (WindCube) operating
in a VAD mode is developed. The model is verified by comparing measurements from a lidar and a
sonic anemometer (sonic). Similar to section 2.1 we first model the turbulence spectra as measured
by the pulsed lidar and then compare our model with the measurements.

2.2.1 Modelling

By definition, the one-dimensional spectrum of any component of the wind field is given as (Wyn-
gaard, 2010)

Fij(k1) =
1

2π

∫ ∞
−∞

Rij(x) exp(−ik1x) dx,

=
1

2π
lim
X→∞

∫ X

−X
Rij(x) exp(−ik1x)

(
1− |x|
X

)
dx, (49)
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where k1 is the wavenumber, Fij(k1) is the one-dimensional spectrum, Rij(x) is the autocovariance
function, x is the separation distance, and X is the length of the record. Since the WindCube
cannot make continuous measurements, let us take only discrete values such that X = N∆x and
x = n∆x, where n is an integer multiple, N is the total number of samples, and ∆x is the distance
traveled by the wind when the lidar beam shifts from one azimuth angle to the other. Since it
takes about 4 s for the WindCube beam to move from the North to the South, or from the East
to the West, assuming Taylor’s hypothesis to be valid, we get ∆x = ū× 4 m, where ū is the mean
wind speed. If we evaluate the spectra measured by the WindCube at only discrete wave numbers
k1q = 2πq/X, then we can write

Fijwc(q) =
1

2π

N∑
n=−N

Rijwc(n) exp

(−i2πnq

N

)(
1− |n|

N

)
∆x. (50)

The challenge now is to find an expression for Rijwc(n). We first demonstrate the model of Rijwc(n)
for the u component and use the same framework to derive the v and w components.

We begin by considering the mathematical form of Taylor’s hypothesis such that

v(x, t) = v(x−∆x, 0), (51)

where t is the time. For simplicity, let us first neglect the averaging along the line-of-sight. We
will introduce this averaging later in the equations. For the turbulence spectra measured by the
WindCube, it is necessary to consider the exact spatial and temporal position of the measurements.
The wind vector is constructed using the North and South beams such that at any given instant,
one current and one previous measurement is used. If we assume that at t = 0, we use the current
measurement from the North beam and the previous measurement from the South beam, then
combining Eqs. (??) and (51) we can write

uwc(m∆x) =
ṽrS(nSdf − e1(m− 1)∆x)− ṽrN (nNdf − e1m∆x)

2 sinφ
, for even m, (52)

uwc(m∆x) =
ṽrS(nSdf − e1m∆x)− ṽrN (nNdf − e1(m− 1)∆x)

2 sinφ
, for odd m, (53)

where e1 = (1, 0, 0) is the unit vector in the mean wind direction. Combining even and odd m from
Eqs. (52) and (53), we can write

uwc(m∆x) =
[
ṽrS

(
nSdf − e1

(
m− (1 + (−1)m)

2

)
∆x
)

− ṽrN
(
nNdf − e1

(
m− (1− (−1)m)

2

)
∆x
)]/(

2 sinφ
)
.

(54)

We know that by definition, Rij(n) = 〈ui(m∆x)uj
(
(m+ n)∆x

)
〉, where 〈〉 denotes ensemble aver-

aging. By applying this definition to Eq. (54), we get auto and cross covariances for the North and
South beams. Introducing the averaging along the beam (using Eq. 4) for only the south beam, we
get〈

ṽrS

(
nSdf − e1

(
m− (1 + (−1)m)

2

)
∆x
)
ṽrS

(
nSdf − e1

(
(m+ n)− (1 + (−1)m+n)

2

)
∆x
)〉

=

∫ ∞
−∞

∫ ∞
−∞

niSnjS ϕ(s1)ϕ(s2)〈
vi

(
nSdf − e1

(
m− (1 + (−1)m)

2

)
∆x+ nSs1

)
vj

(
nSdf − e1

(
(m+ n)− (1 + (−1)m+n)

2

)
∆x+ nSs2

)〉
ds1ds2

(55)
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If we denote r =
(
nSdf−e1

(
m−(1+(−1)m)/2

)
∆x
)
−
(
nSdf−e1

(
(m+n)−(1+(−1)m+n)/2

)
∆x
)

as the separation distance between the S-S beam combination, then we can write

RṽrS (n) =

∫ ∞
−∞

∫ ∞
−∞

niSnjS ϕ(s1)ϕ(s2)Rij(r + nS(s1 − s2)) ds1ds2, (56)

where RṽrS (n) is the autocovariance of the radial velocity for the South beam. Rij(r) is related to
the three dimensional spectral velocity tensor Φij(k) by the inverse Fourier transform (Wyngaard,
2010), i.e.,

Rij(r + nS(s1 − s2)) =

∫
Φij(k) exp(ik · (r + nS(s1 − s2))) dk, (57)

where
∫
dk ≡

∫∞
−∞

∫∞
−∞

∫∞
−∞ dk1dk2dk3 and k = (k1, k2, k3) denotes the wave vector. Substituting

Eq. (57) into (56) and rearranging the terms, we get

RṽrS (r) =

∫
Φij(k) niSnjS exp(ik · r) ϕ̂(k · nS)ϕ̂∗(k · nS) dk (58)

whereˆdenotes Fourier transform and ∗ complex conjugation. Reducing the expression of r, we get

r = e1

(
(−1)m

∆x

2
(1− (−1)n) + n∆x

)
. (59)

Similarly, if we assume that at t = 0 we use the current measurement from the South beam and
the previous measurement from the North beam, then we get

uwc(m∆x) =
[
ṽrS

(
nSdf − e1

(
m− (1− (−1)m)

2

)
∆x
)

− ṽrN
(
nNdf − e1

(
m− (1 + (−1)m)

2

)
∆x
)]/(

2 sinφ
)
,

(60)

and the separation distance for the S-S beam combination is given as r = −(−1)m∆x/2(1−(−1)n)+
n∆x. In order to make the time series statistically stationary, we consider that there is an equal
probability that the beam at t = 0 points either in the North or South direction. This eliminates
the dependence of the autocovariance function on m. We perform similar analysis on the auto
and cross covariances for other beams. In total, we then get eight separation distances; two for
the S-S, two for S-N, two for N-S, and two for N-N beam combinations. If we denote rul (the
subscript l denotes the respective beam combination) as the separation distance for different beam
combinations, then we can write all the separation distances in compact form as

rul =


e1

(
(−1)l∆x2 (1− (−1)n) + n∆x

)
for l = 1, 2, 7, 8;

nSdf − nNdf + e1

(
(−1)l∆x2 (1 + (−1)n) + n∆x

)
for l = 3, 4;

nNdf − nSdf + e1

(
(−1)l∆x2 (1 + (−1)n) + n∆x

)
for l = 5, 6.

(61)

Following a similar procedure for the v component, we get the following separation distances:

rvl =


e1

(
(−1)l∆x2 (1− (−1)n) + n∆x

)
for l = 1, 2, 7, 8;

nEdf − nWdf + e1

(
(−1)l∆x2 (1 + (−1)n) + n∆x

)
for l = 3, 4;

nWdf − nEdf + e1

(
(−1)l∆x2 (1 + (−1)n) + n∆x

)
for l = 5, 6.

(62)

The separation distances for the w component are the same as those for the u component, because
only the North and South beams are used to obtain wwc (Eq. 31). Combining Eqs. (52)–(62) and
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using the symmetry properties of Φij(k), we get the expressions for the autocovariance of the u
and v components as

Ruwc(n) =
1

8 sin2 φ

∫
Φij(k)

[
niSnjSϕ̂(k · nS)ϕ̂∗(k · nS)

2∑
l=1

exp(ik · rul)

− niSnjN ϕ̂(k · nS)ϕ̂∗(k · nN )

6∑
l=3

exp(ik · rul)

+ niNnjN ϕ̂(k · nN )ϕ̂∗(k · nN )
8∑
l=7

exp(ik · rul)
]
dk,

(63)

Rvwc(n) =
1

8 sin2 φ

∫
Φij(k)

[
niEnjEϕ̂(k · nE)ϕ̂∗(k · nE)

2∑
l=1

exp(ik · rvl)

− niEnjW ϕ̂(k · nE)ϕ̂∗(k · nW )

6∑
l=3

exp(ik · rvl)

+ niWnjW ϕ̂(k · nW )ϕ̂∗(k · nW )
8∑
l=7

exp(ik · rvl)
]
dk.

(64)

The expression for the w component is similar to that for the u component, except that the second
term in the square brackets of Eq. (63) is added instead of subtracted, and sin2 φ is replaced by
cos2 φ in the denominator. Substituting Eqs. (63) and (64) into Eq. (50), we can finally theoretically
calculate the turbulence spectra measured by the WindCube for the u, v, and w components of the
velocity field.

In order to see the extent of attenuation and redistribution of the spectral energy, we compare
these models with the true theoretical spectra measured by sonics and those measured by the
WindCube. The true theoretical spectrum of any component of the wind field is also given as
(apart from Eq. 49) (Wyngaard, 2010),

Fij(k1) =

∫ ∞
−∞

∫ ∞
−∞

Φij(k) dk2dk3. (65)

We consider the sonic measurements to essentially represent the true theoretical spectra.

2.2.2 Comparison with the measurements

The measurements are taken from the site described in section 2.1.3. We use the Metek USA-1
sonic measurements at 60 and 100 m in combination with the WindCube (≈ 30 m range resolution)
to compare with the modeled turbulence spectra. The WindCube is located about 5 m North-West
of the met-mast, and the data were collected between January and April 2009. In order to avoid
interference with the met-mast, the WindCube is turned in a horizontal plane such that the nominal
North beam is 45◦ (i.e., in a North-East direction) with respect to true North. The frequency of
measurement for the sonics is 20 Hz, whereas the WindCube takes approximately 2 s to shift
from one azimuth angle to the other. We use the measurements from a narrow directional sector
of 130◦–140◦ only in order to align the mean wind direction with the nominal E-W beam of the
WindCube. Thus, the u and w component measurements are deduced from the nominal E-W
beams and the v component measurements are deduced from the nominal N-S beams.

The other criteria for the selection of the data are neutral atmospheric stability and a mean
wind speed of 9 m/s. This wind speed was chosen because the Mann (1994) model parameters were
available at 9 m/s. Using Taylor’s hypothesis, we then have the sampling distance in the mean
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wind direction ∆x = 9 × 4 m. We selected the data with a mean wind speed in the interval 8-10
m/s, which resulted in 79 and 58 10-min time series of the sonics and the WindCube at 60 and
100 m, respectively. Atmospheric stability is characterized using the standard surface-layer length
scale LMO, commonly known as the Monin-Obukhov length. Following Gryning et al. (2007), the
conditions are considered neutral when |LMO| > 500. LMO is estimated using the eddy covariance
method (Kaimal and Finnigan, 1994) from the sonic measurements at 20 m.
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Figure 9: Comparison of the modeled and measured u spectrum at 60 m (left) and 100 m (right).
The markers indicate measurements and the continuous line indicates the model. The black and
gray markers denote WindCube spectrum and sonic spectrum, respectively.

Fig. 9 shows the comparison of the modeled and measured u spectrum at 60 and 100 m.
The measurements indicate that the spectrum measured by the WindCube deviates significantly
from the standard surface-layer spectrum as the turbulence scales decrease approximately from
k1 > 0.005 m−1. Approximately in the inertial sub-range, where the sonic spectra scales with

k
−5/3
1 , there is an almost complete attenuation of the turbulence signal, and hence a rapid decrease

in the spectral energy. This observation has a striking resemblance with that of Canadillas et al.
(2010), where an independent measurement under neutral conditions in the German North Sea
showed an increase in the spectral energy above k1 > 0.005 m−1 and subsequent rapid attenuation.
One of the reasons for this redistribution of the spectral energy is the contribution of the auto and
cross covariances of different components of the velocity field, as seen in Eq. (63). At very low
wavenumbers (< 0.005 m−1), the spectral energy measured by the WindCube is approximately the
same as that measured by the sonics. This is because very large turbulence eddies are associated
with very low wavenumbers that cause the volume measurement from the lidar to behave essentially
like a point measurement.

At both heights, our model agrees very well with the measurements at almost all wavenumbers.
The point-like behavior of the WindCube at very low wavenumbers, and redistribution of the
spectral energy beyond k1 > 0.005 m−1, is captured by the model very well. However, there are
stark differences in the distribution of the spectral energy at 60 and 100 m. This is because of
the beam interference phenomenon that occurs for certain separation distances at 100 m. This is
explained as follows.

In our model, we have assumed validity of Taylor’s hypothesis, which states that turbulence
is advected by the mean wind field, i.e., the local velocity of the turbulent eddies is so small that
they essentially move with only the mean velocity. In other words, turbulence can be considered
to be frozen. For the u spectrum, we use only the N-S beams that are aligned in the mean wind
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direction. At 100 m, the mean wind speed is such that the North and South beams will investigate
the same air (but different components) after approximately 3∆x. Looking more closely at Eq.
(61), at 3∆x we get ru3 → 0 and ru4 → 0. This implies that in Eq. (63), exp(ik · ru3) → 1 and
exp(ik · ru4)→ 1. This will cause an overall decrease in Ruwc(n) at n = 3. From our calculations,
we also find anomalous behavior of Ruwc(n) at n = 2 and n = 4. Revisiting Eq. (61), we find that
at n = 2, ru3 → 0 and at n = 4, ru4 → 0. This implies that it will cause some reduction in Ruwc(n),
but not as much as when n = 3. In order to explain this behavior, we illustrate the interference
phenomenon of the beams in Fig. 10.

Figure 10: Schematic of the intersection of the North and South Beams. The shaded portion
indicates the measurement volume. The black marker indicates a height of 100 m

Since we assume Taylor’s hypothesis, we can either fix the N-S beams and measure the flow
field as it moves past the beams, or freeze the flow field and move the N-S beams instead. For
simplicity, let us freeze the flow field and represent 1–8 as the positions at which the North and
the South beams perform measurements. The difference between each position is then equal to the
separation distance ∆x. Let 1, 3, 5, and 7 denote the measurements of the North beam and 2, 4,
6, and 8 denote those of the South beam. For now, let us consider only the intersection of beams
2 and 5 at point A, which is the point where the North and South beams will see the same air.
This occurs at a separation distance of 3∆x corresponding to a height of 104 m. As a result, we
will get unusual covariances whenever there is intersection of beams 2 and 5 in combination with
other beam measurements. Since the WindCube uses one current and one previous measurement
to deduce wind field components, we use the measurement from beam 2 when it is in combination
with beam 1 or 3. Similarly, we use beam 5 when it is in combination with beam 4 or 6. These
combinations can be written as [

(2, 1) (3, 2)
(5, 4) (6, 5)

]
(66)
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The bold numbers in Eq. (66) indicate the current measurement for the respective beams, i.e., the
set (2, 1) indicates that the current measurement from beam 2 is used in combination with the
previous measurement from beam 1 to deduce the u component, and so on for other sets. In this
case, we will obtain unusual covariances at these separation distances in the model, which are equal
to the difference between beam numbers in bold (Eq. 66) that correspond to the intersection of
beams 2 and 5. This happens at 5 − 3, 5 − 2, and 6 − 2, corresponding to separation distances
of 2∆x, 3∆x, and 4∆x, respectively. We do not get unusual covariances at 3− 2 because the sets
(2, 1) and (3, 2) do not contain beam 5, and similarly at 6 − 5, since the sets (5, 4) and (6, 5) do
not contain beam 2. Thus, in general, we will always obtain unusual covariances at the heights at
which the distance between the North and the South beams corresponds to separation distances
of (n − 1)∆x, n∆x, and (n + 1)∆x (where n is odd, since for even n the North and South beams
never intersect). Thus, if we now consider intersection points B (≈ 35 m) and C (≈ 173 m) in Fig.
10, then the separation distances are ∆x and 5∆x, respectively. Thus, we should expect unusual
covariances at 0, ∆x, and 2∆x at 35 m, whereas at 173 m, we expect the same at 4∆x, 5∆x, and
6∆x.
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Figure 11: Comparison of Ruwc(n)/σ2
u at different heights

In order to verify the above explanation, Ruwc(n)/σ2
u (where σ2

u is the true variance of the u
component) is calculated at two separation distances (100 and 173 m), as shown in Fig. 11. We do
not calculate Ruwc(n)/σ2

u at 35 m because the WindCube reliably measures from approximately 40
m (owing to a large measuring volume of about 30 m). σ2

u is calculated by integrating Eq. (65) over
the k1 domain at respective heights. We can now clearly see unusual covariances at (n−1)∆x, n∆x,
and (n + 1)∆x at both heights, where n = 3 at 100 m and n = 5 at 173 m. Fig. 9 indicates that
the model captures this beam interference phenomenon, which is also present in the measurements
at 100 m, very well. Thus, it could also be implied that in nature, Taylor’s hypothesis is valid to
some extent.
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Figure 12: Comparison of the modeled and measured v spectrum at 60 m (left) and 100 m (right).
The meaning of the symbols and colors correspond to those in Fig. 9

Fig. 12 shows the comparison of the modeled and measured v spectrum at 60 and 100m. As
observed for the u component, the v spectrum measured by the lidar deviates significantly from that
of the sonic spectrum. However, at very low wavenumbers, there is an offset in the spectral energy
between the lidar and the sonic. The behavior in the inertial sub-range is the same as that for
the u component, where a rapid attenuation in the spectral energy is observed. Our model agrees
very well with the measurements at 60 and 100 m, except at very low wavenumbers (< 0.005 m−1),
where the model over estimates the spectral energy. One striking feature of this comparison is that
as opposed to the u component, we do not see any beam interference phenomenon at 100 m because
of Taylor’s hypothesis. This is because only the E-W beams are used to deduce the v components,
which are perpendicular to the mean wind field. Thus, even though we assume Taylor’s hypothesis,
the beams never interfere with each other at any separation distance. Thus, this result indirectly
verifies the beam interference phenomenon explanation for the u component at 100 m. We give the
following explanation for the over estimation of the spectral energy at very low wavenumbers.

From Eq. (64), it is understood that the v spectrum measured by the WindCube contains
contributions from the v and w components of the spectral tensor, i.e., Φ22(k) and Φ33(k), weighted
by the corresponding weighting functions |ϕ(k · nE)|2 and |ϕ(k · nW )|2. Due to the assumption
of uniform shear and no effect of the Coriolis force by Mann (1994), the symmetry group of the
spectral tensor model is such that the co-spectral energy between v and w is zero, i.e., F23(k1) = 0.
We observed, using sonic anemometer measurements, that F23(k1) is not exactly zero, but has some
negative spectral energy at all wavenumbers. We also observed that F23(k1) < F13(k1). On closely
analyzing Eq. (64), we note that, in nature, if F23(k1) contributes to the covariance measured by
the lidar, it will result in overall reduction of Rvwc . Thus, the symmetry group of Mann (1994)
may not be entirely valid. We also find that the contribution of the second term in Eq. (64) is
negligible, and only the first and the third terms add to the spectral energy. Let us now consider a
case such that at 60 m, the beam is staring perpendicularly to the mean wind field in a horizontal
plane. It will thus measure only the v component of the velocity field. In this case, the v spectrum
measured by the WindCube is given as

Fvwc∗(k1) =

∫ ∞
−∞

(∫ ∞
−∞

Φ22(k) dk3

)
|ϕ̂(k2)|2 dk2, (67)

where ∗ denotes spectra for a staring beam lidar. In Eq. (67), we first integrate over the k3 domain,
and the resulting two dimensional spectrum Ev(k1, k2) is weighted by the filter function |ϕ̂(k2)|2.
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Figure 13: Two-Dimensional energy spectrum of the v component. The weighting function |ϕ̂(k2)|2
is plotted on the right y-axis

The behavior of the weighting function is such that |ϕ̂(k2)|2 → 1 as k2 → 0. Thus, if the amount
of two dimensional spectral energy increases sharply as (k1, k2) → 0, then the contribution of
this spectral energy in the one-dimensional spectrum will be significant. In order to verify this
assumption, we calculate Ev(k1, k2) at three values of k1, i.e., k1 = (10−1, 10−2, 10−3) m−1, as
shown in Fig. 13. We also plot the variation of |ϕ̂(k2)|2, so that filtering of the spectral energy
for the respective wavenumbers is clearly evident. From the figure, it is observed that k1 → 0,
Ev(k1, k2) increases by several orders of magnitude with decreasing |k2| until a certain value of
|k2|, after which it decreases with k2 → 0. Since Mann (1994) does not assume isotropy in the
horizontal plane, Ev(k1, k2)→ 0 as (k1, k2)→ 0 (Wyngaard, 2010). In our study, the WindCube is
not horizontal, but at φ = 27.5◦ with the vertical. Hence, for the v component, the filter function
along the line-of-sight acts over k2 and k3 domains. Its influence on averaging of the two and three
dimensional spectral energy will be much more complicated than that for a horizontally pointing
lidar. Nevertheless, we can argue similar reasons for the conically scanning case.

From the above explanation, we can consider four reasons for the over estimation of Fvwc(k1)
in the model as k1 → 0.

1. Ev(k1, k2) could be more spread out such that the total energy over the k2 domain would still
be the same as that predicted by the Mann (1994) model.

2. The peak in Ev(k1, k2) could be shifted to larger values of |k2|.

3. Despite anisotropic conditions, Ev(k1, k2) could approach zero as (k1, k2)→ 0.

4. There could be some contribution by F23(k1).
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As a consequence, the Mann (1994) model would still predict Fv(k1) considerably accurate. How-
ever, when Ev(k1, k2) is weighted by |ϕ̂(k2)|2, the total energy calculated using the Mann (1994)
model and that obtained in nature would be different. Thus, it will cause overestimation of Fvwc(k1)
as k1 → 0, despite observing a good agreement between the theoretical and measured Fv(k1) (Fig.
12). Unfortunately, it is very difficult to measure the two- and three-dimensional spectra, and
hence, we cannot verify our explanation.
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Figure 14: Comparison of the modeled and measured w spectrum at 60 m (left) and 100 m (right).
The meaning of the symbols and colors correspond to those in Fig. 9

Fig. 14 shows the comparison of the modeled and measured w spectrum at 60 and 100 m. Since
in the calculation of the w spectrum, we use only the North and South beams, we will obtain similar
beam interference at 100 m, because of the assumption of Taylor’s hypothesis, as that observed
for the u spectrum. The measured WindCube spectrum agrees quite well with the model at both
heights, especially at high wavenumbers. As observed for the u component, at 100 m we note the
effect of unusual covariances on the spectral energies. At very low wavenumbers, there is a slight
offset between the model and measurements. This offset could be because of the slight deviation in
the modeled and measured sonic spectrum. The model also shows that at very low wavenumbers,
because of very large turbulence eddies, the volume measurement from the lidar behaves similar to
a point measurement.

3 Turbulence measurements using the six beam technique

In the previous section we have seen that the VAD technique results in large bias in the turbulence
measurements. We are then forced to look at different ways of data analysis that do not give this
bias. Instead of combining beams as in the VAD method, we instead use the variances of the radial
velocities. Mathematically, it can be written as (Eberhard et al., 1989, Mann et al., 2010),

〈v′r
2〉 = 〈u′2〉 sin2 φ cos2 θ + 〈v′2〉 sin2 φ sin2 θ + 〈w′2〉 cos2 φ

+ 2〈u′v′〉 sin2 φ sin θ cos θ + 2〈u′w′〉 sinφ cosφ cos θ + 2〈v′w′〉 sinφ cosφ sin θ
(68)

where 〈v′r2〉 is the radial velocity variance. Since there are six unknowns, we need six equations to
solve for the set of the second-order moments,

Σ =
(
〈u′2〉, 〈v′2〉, 〈w′2〉, 〈u′v′〉, 〈u′w′〉, 〈v′w′〉

)
(69)
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Scanning the circle at only one half opening angle, using Eq. (68) there are infinite solutions for
the set Σ. Thus, we need more than one value of φ to obtain a solution for Σ. The challenge is to
obtain the optimum combination of X = (θi, φi)|i..6. If we represent Eq. (68) as a system of linear
equations then in matrix form we can write,

Σ = M−1S (70)

where, M is a 6 × 6 matrix of the coefficients of Σ, and S =
(
〈v′r1

2〉, 〈v′r2
2〉, ..., 〈v′r6

2〉
)

is the set

of the variances of radial velocities. We then need to formulate some objective function based on
minimizing the random errors in the measurements.

3.1 Formulating the objective function

The coordinate system for lidars is a left-handed coordinate system. In order to align with the
mean wind direction, we need to apply coordinate transformations on any tensors that are defined
in the original coordinate system. Thus, the second order tensor 〈v′iv′j〉 rotated clockwise in the
mean wind direction has to be multiplied by a transformation matrix T given as,

T =

 cos Θ sin Θ 0
− sin Θ cos Θ 0

0 0 1

 (71)

In the cartesian-tensor suffix notation, for a second-order tensor, we can write,

〈ṽ′kṽ′l〉 = TikTjl〈v′iv′j〉 (72)

where 〈ṽ′iṽ′j〉 are the second-order moments in the coordinate system rotated in the mean wind
direction, and TikTjl are the direction cosines. Since 〈v′iv′j〉 is a symmetric second-order tensor,
we are only interested in the set Σ given by Eq. 69. Using Einstein’s summation, we get for each
component of the set Σ̃,

〈ũ′2〉 = 〈u′2〉 cos2 Θ + 〈v′2〉 sin2 Θ + 〈u′v′〉 sin 2Θ (73)

〈ṽ′2〉 = 〈u′2〉 sin2 Θ + 〈v′2〉 cos2 Θ− 〈u′v′〉 sin 2Θ (74)

〈w̃′2〉 = 〈w′2〉 (75)

〈ũ′v′〉 = −1

2
sin 2Θ〈u′2〉+

1

2
sin 2Θ〈v′2〉+ 〈u′v′〉 cos 2Θ (76)

〈ũ′w′〉 = 〈u′w′〉 cos Θ + 〈v′w′〉 sin Θ (77)

〈ṽ′w′〉 = −〈u′w′〉 sin Θ + 〈v′w′〉 cos Θ (78)

where Σ̃ =
(
〈ũ′2〉, 〈ṽ′2〉, 〈w̃′2〉, 〈ũ′v′〉, 〈ũ′w′〉, 〈ṽ′w′〉

)
is the set of second-order moments in the co-

ordinate system rotated in the mean wind direction. In matrix form, Eqs. (73–78) can be written
as, 

〈ũ′2〉
〈ṽ′2〉
〈w̃′2〉
〈ũ′v′〉
〈ũ′w′〉
〈ṽ′w′〉


=


cos2 Θ sin2 Θ 0 sin 2Θ 0 0
sin2 Θ cos2 Θ 0 − sin 2Θ 0 0

0 0 1 0 0 0
−1

2
sin 2Θ 1

2
sin 2Θ 0 cos 2Θ 0 0

0 0 0 0 cos Θ sin Θ
0 0 0 0 − sin Θ cos Θ




〈u′2〉
〈v′2〉
〈w′2〉
〈u′v′〉
〈u′w′〉
〈v′w′〉

 (79)

Σ̃ = RΣ (80)
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where R is the transformation matrix to be applied on the set Σ to obtain Σ̃ in the rotated
coordinate system. Using Eq. (70), we can write,

δΣ̃ = RM−1δS (81)

where δΣ̃ and δS are the random errors in the second-order moments and radial velocity variances
respectively. Following lengthy manipulations, we get

〈δΣ̃ · δΣ̃〉
〈ε2s〉

= Tr(RN(RN)T ) (82)

where N = M−1, Tr denotes trace of a matrix, T denotes matrix transpose, and 〈ε2s〉 is the error
variance of the radial velocities. In deriving Eq. (82) we have assumed that the error variance of
the radial velocity is equal for all six beams. Eq. (82) states that the error variance is dependent on
the mean wind direction. In order to make it independent of the mean wind direction, we assume
a uniform distribution of the mean wind direction, and estimate the averaged ratio of the error
variance. Thus, 〈

〈δΣ̃ · δΣ̃〉
〈ε2s〉

〉
=

1

2π

∫ 2π

0
Tr(RN(RN)T )dΘ

=
1

2π

∫ 2π

0
Tr(RNNTRT )dΘ

Using the property of matrix trace that it is invariant under cyclic permutations we get,〈
〈δΣ̃ · δΣ̃〉
〈ε2s〉

〉
=

1

2π

∫ 2π

0
Tr(RTRNNT )dΘ (83)

We can also switch the order between integration and matrix trace, i.e. either we can estimate the
trace first and then the integration or vice-versa. Thus,〈

〈δΣ̃ · δΣ̃〉
〈ε2s〉

〉
= Tr

([
1

2π

∫ 2π

0
RTRdΘ

]
NNT

)
(84)

Solving the integral we get,

〈
〈δΣ̃ · δΣ̃〉
〈ε2s〉

〉
= Tr





7
8

1
8 0 0 0 0

1
8

7
8 0 0 0 0

0 0 1 0 0 0
0 0 0 3

2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

NN
T

 (85)

3.2 Optimizing the objective function

From (Eq. 85), it is clear that we need to optimize for 12 variables, i.e. a set X = (θi, φi)|i=1..6.
The constraints constitute the range of angles of θi and φi. Thus, the optimization problem can be
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stated as follows:

Minimize f(X) = Tr





7
8

1
8 0 0 0 0

1
8

7
8 0 0 0 0

0 0 1 0 0 0
0 0 0 3

2 0 0
0 0 0 0 1 0
0 0 0 0 0 1

NN
T


subject to constraints,

0◦ ≤ θi|i=1..6 ≤ 360◦

0◦ ≤ φi|i=1..6 ≤ 45◦

(86)

We assume that statistical homogeneity in the horizontal direction is valid only for a maximum value
of φi = 45◦ (Actually, this assumption is quite random, and depends on the terrain conditions).
Analytical optimization of Eq. (86) provides a unique design solution set X. However, Eq. (86) is
a very complicated optimization problem, and hence, analytical solution is not possible1. In that
case, the simplest method is to solve Eq. (86) for different combinations of X. However, this would
need very large number of computations. E.g. if we assume that X take only integer values, the
number of computations required are 3606 × 906 ≈ O(1027). It is observed that one computation
of f(X) takes approximately 0.5 seconds. Thus 1027 computations need approximately 1017 years.
Moreover, if X also take real values then the number of computations, and hence, the time required
increase manyfold. Thus, with the current available computer resources it is seen that evaluating
f(X) by directly substituting for different sets of X is not possible. We are thus forced to use
available numerical optimization techniques.

There are two classes of numerical methods to solve a non-linear optimization problem Rao
(2009):

1. Direct search methods

2. Gradient methods

For gradient methods, it is essential that the objective function is differentiable, and ∇f is defined
at all points, i.e. f(X) is not discontinuous Rao (2009). For simplicity we assume that f(X) is
discontinuous, and hence, we cannot use gradient methods. Thus, we optimize Eq. (86) using direct
search methods only. The main advantage of using direct search methods is that they can be used
for discontinuous and non-differentiable functions. The main limitation of such methods is that the
found optimum may only be a local optimum.

In principle, any direct search algorithm can be used to find an optimum solution. It is generally
very cumbersome to write algorithms for all available methods, and hence, we use the already
available algorithms in Mathematica. For a global optimization problem, four different algorithms
are available in Mathematica:

1. Simplex (NM) Nelder and Mead (1965)

2. Differential Evolution (DE) Storn and Price (1997)

3. Simulated Annealing (SA) Ingber (1993)

4. Random Search (RS) Rao (2009)

Eventually, we have to choose a solution set from one of these algorithms.
Table 2 gives a comparison of different optimization methods, when X is constrained to take

real values. It is observed that the NM, SA and RS methods give the same optimum f(X∗). The

1Corresponding attempt is made in Mathematica
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Table 2: Comparison of the optimization methods

Optimization Methods
Nelder-Mead Differential Evolution Simulated Annealing Random Search

〈δΣ · δΣ〉/〈ε2s〉 10.2 11.78 10.2 10.2
i θi φi θi φi θi φi θi φi
1 0 45 0 44.9999 0 45 0 45
2 284.451 1.087e-7 109.771 0.00087255 72 45 216 45
3 144 45 233.185 43.8284 297.23 6.8733e-6 143.035 6.6121e-15
4 288 45 310.453 44.9993 216 45 144 45
5 72 45 144.495 44.9333 288 45 72 45
6 216 45 89.3294 44.9993 144 45 288 45

DE method gives a slightly higher value of the optimum. X is evaluated to machine precision.
However, in reality it is difficult to orient the laser beam at such precise angles φi. Hence, we
rounded X∗ to the nearest integer values and checked its influence on f(X∗). We found that there
is no influence of rounding of X∗ on f(X∗).

3.3 Results

Following Eq. (70) we can estimate the second-order moments using the six beam approach. We
choose X from the SA method. Since the NM and RS methods also give the same optimum
solution, X could also be chosen from these methods. From Eq. (81) the u variance can be written
as,

〈ũ′2〉 = 〈v′2r1〉 − 〈v′
2
r3〉 − 0.085

(
〈v′2r2〉+ 〈v′2r5〉

)
+ 0.585

(
〈v′2r4〉+ 〈v′2r6〉

)
(87)

Following section 2.1 we get,

〈v′2r1〉 =

∫
Φij(k)βi1(k)β∗j1(k)dk (88)

where βi1(k) =
(∫∞
−∞ ϕ(s)ni1e

i(s+df )k·n1ds
)

and ∗ denotes complex conjugation. We can then

use appropriate weighting function ϕ(s) to estimate βi1(k). We can estimate the variances of the
radial velocities in the remaining beam directions in a similar manner and substitute in Eq. (87) to
theoretically estimate the u variance measured by the lidar. The remaining second-order moments
are estimated in a similar manner.

Fig. (15) shows theoretical comparison of the systematic errors using the six beam approach
with that using the VAD technique. Although the results are obtained for all stability conditions,
only the neutral conditions are shown. One striking difference between two approaches is that the
systematic error in the w variance is reduced significantly using the six beam approach. This is
mainly because we have one vertical beam, and the only form of bias that remains is the volume
averaging. For the ZephIR, the systematic errors in u and v variances are the same for both
approaches. For the Windcube, a significant improvement is obtained for all variances using the
six beam approach. Although, fig. (15b) shows that the VAD technique gives lower systematic
error, it is mainly due to the addition and subtraction of all second-order moments. This effect is
completely eliminated using the six beam approach. The only form of bias that remains is then the
line-of-sight averaging. It has been observed that the Windcube systematic errors remain constant
for the neutral and unstable conditions (not shown) using the six beam approach. Such is not the
case with the VAD technique, where there is an over estimation of the variances.

4 Summary

From section 2 it is clear that VAD technique should not be used in turbulence measurements using
lidars as it results in large systematic errors. Two mechanisms contribute to the systematic errors,
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Figure 15: Comparison of the ZephIR and Windcube systematic errors under neutral conditions
using the six Beam approach and the VAD technique

1. averaging of turbulence within the sample volume, and

2. contribution of other components of Rij

Also, from Eqs. (15, 18, 19 and 44) the general lidar equation for the second-order moments using
the VAD data processing technique can be written as,

〈v′mv′n〉lidar =

∫
Φij(k)Xi

m(k)Y ∗j
n(k) dk; (89)

Xi
m(k) =


βi(k)

∧
bi(k), m = 1

γi(k)
∧
ci(k), m = 2

αi(k)
∧
ai(k), m = 3

 , Y ∗j
n(k) =


β∗j (k)

∧
b∗j (k), n = 1

γ∗j (k)
∧
c∗j (k), n = 2

α∗j (k)
∧
a∗j (k), n = 3


The weighting functions αi(k), βi(k), γi(k) are used for the ZephIR and ai(k), bi(k), ci(k) are used
for the WindCube. Thus, the measurement of the second-order moment by lidar involves interaction
of all components of the spectral velocity tensor Φij(k) weighted by the corresponding weighting
functions Xi

m(k) and Y ∗j
n(k). It is to be noted that Eqn. (89) is given in Einstein summation

convention, and hence, in order to explicitly see the contribution of all components of Φij(k) on
the measurement of the second-order moments by lidar, this equation must be expanded for all
values of the subscripts i and j. In most cases, this results in the attenuation of the second-order
moments, whereas in some cases this also results in amplification of the second-order moment, e.g.
as observed for the WindCube in the unstable conditions (see Fig. 7).

One might argue that in order to retrieve true turbulence we can simply use the ratio between
the lidar and sonic measured Rij , but the results in section 2.2 demonstrate that it is not possible.
A simple transfer function in the spectral domain cannot simply be deduced because of complex
interaction of the components of Rij . Unfortunately, in many research studies consideration to
such systematic errors is not given and advanced studies are further carried out, leading to wrong
interpretation of results. A concerted effort is therefore required in the remote sensing community
to find methods that result in unbiased measurement of turbulence. The six beam approach is one
such method that has the potential to serve this purpose.
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