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1 Introduction

For many civil engineering structures, including wind turbines, dynamic wind
loading caused by the atmospheric turbulence is a serious concern for the de-
signer. Gust loading on streamlines bridge decks requires knowledge of the
vertical wind field fluctuations not only in one point, but also how the fluctua-
tions are correlated in space (Simiu and Scanlan 1996, Larose and Mann 1998).
Also the horizontal components may be of importance in bridge aerodynamics.
For dynamical load calculations on a wind turbine, for example at an off-shore
location knowledge of all three wind components and their spatial correlations
are needed because the gusts are ‘sampled’ in a complicated way by the sweeping
blades. Yet other structures such as tension leg platforms used for extracting
oil on deep waters are sensitive to slow variation in the direction of the wind.
Thus various engineering structures are sensitive to various components of wind
fluctuations at a wide range of frequencies and also to the spatial correlations
of these fluctuations.

The spatial structure of turbulence is also important in order to understand
how remote sensing instruments such as lidars measure in a turbulent flow fields.
That is because the lidar’s sampling volume is rather extended and thus very
far from the almost point-like measurements of a ultra-sonic anemometer. The
description of how lidars measure turbulence may be found in Mann, Cariou,
Courtney, Parmentier, Mikkelsen, Wagner, Lindelöw, Sjöholm and Enevoldsen
(2009) for a pulsed lidar, or in Sjöholm, Mikkelsen, Mann, Enevoldsen and
Courtney (2009) for a continuous wave (cw) lidar.

The purpose of this contribution is to model the spectral tensor of neutral
atmospheric surface layer turbulence. The spectral tensor contains all infor-
mation on spectra, cross-spectra and coherences, which usually are the input
requested by wind engineers. We also to devise a general algorithm to simulate
three-dimensional fields of all three components of the wind velocity fluctua-
tions. Such simulations are particular useful for time domain simulations of
gust loading of wind turbines and other structures.
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In section 3 Rapid Distortion Theory (RDT) is used to estimate the tendency
of shear to make turbulence anisotropic. RDT is a linearization of the Navier–
Stokes equations and has as such limited applicability. The influence of the
non-linearity is modeled by postulating some limit as to how much shear is
allowed to make the turbulence anisotropic. This modelling uses the concept
of eddy lifetime. Despite the various assumptions and postulates the tensor
model only contains three adjustable parameters: a length scale describing the
size of the energy containing eddies, a non-dimensional number used in the
parametrization of eddy lifetime, and the third parameter is a measure of the
energy dissipation.

These three parameters are estimated by comparing the model to measure-
ments over the sea in section 4. In section 5 the model is compared to various
widely used wind engineering spectral formulations. Finally, in section 6 the
spectral tensor is used in a numerical algorithm to simulate three-dimensional
fields of all three components of the wind vector. This is done by recasting
the Fourier representation of the wind field in the discrete wave-vector space,
i.e. as a trigonometric series, where the statistics of the random coefficients
are determined by the spectral tensor. The method is considerably simpler,
faster and in some aspects more physical than many other currently used simu-
lation algorithms. The method is now used in bridge aerodynamics and in load
calculations on wind turbines.

Much of the material presented here has previously been reported in Mann
(1994) and Mann (1998), and more details on many aspects may be found in
these papers. Newer comparison with neutral atmospheric data taken from
Risø’s test station Høvsøre may be found in Peña, Gryning, Mann and Hasager
(2010) and comparison under different atmospheric stabilities are under way.

2 Definitions

The atmospheric turbulent velocity field is denoted by ũ(x ), where x = (x, y, z)
is a right-handed coordinate system with the x-axis in the direction of the
mean wind field and z as the vertical axis. The fluctuations around the mean
wind, u(x ) = (u1, u2, u3) = (u, v, w) = ũ(x ) − (U(z), 0, 0), are assumed to be
homogeneous in space, which is often the case in the horizontal directions but
is only a crude approximation in the vertical. Since turbulence over the sea at
high wind speeds is primarily shear-generated, the mean wind field is allowed
to vary as a function of z. Because of homogeneity, the covariance tensor

Rij(r) = 〈ui(x )uj(x + r)〉 (1)

is only a function of the separation vector r (〈 〉 denotes ensemble averaging).
We shall use Taylor’s frozen turbulence hypothesis to interpret time series

as ‘space series’ and to serve as a ‘dispersion relation’ between frequency and
wave number (Panofsky and Dutton 1984). Therefore, we can suppress the time
argument in u .
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We only aim at modelling the second order statistics of turbulence, such
as variances, cross-spectra, etc. For simulation purposes the velocity field is
otherwise assumed to be Gaussian (see section 6). It is still not clear how much
influence the statistics of third order, such as skewness, has on load calculations.

All second order statistics can be derived from the covariance tensor or its
Fourier transform, the spectral tensor:

Φij(k) =
1

(2π)3

∫
Rij(r) exp(−ik · r)dr , (2)

where
∫

dr ≡
∫∞
−∞

∫∞
−∞

∫∞
−∞ dr1dr2dr3. The spectral tensor is the basis of the

Fourier simulation in section 6.
The stochastic velocity field can be represented in terms of a generalized

stochastic Fourier-Stieltjes integral:

u(x ) =
∫

eik ·xdZ (k), (3)

where the integration is over all wave number space. The orthogonal process Z
is connected to the spectral tensor by

〈dZ∗
i (k)dZj(k)〉 = Φij(k)dk1dk2dk3, (4)

which is valid for infinitely small dki and where ∗ denotes complex conjugation
(Batchelor 1953).

Is it very difficult to measure the spectral tensor directly. Instead cross-
spectra, defined as

χij(k1, ∆y, ∆z) =
1
2π

∫ ∞

−∞
Rij(x, ∆y, ∆z)e−ik1xdx (5)

are often measured, say by two instruments separated by ∆y in the horizontal
direction perpendicular to the wind and ∆z in the vertical, and are used in
practical applications. The connection between the components of the spectral
tensor and the cross-spectra is

χij(k1, ∆y, ∆z) =
∫ ∞

−∞

∫ ∞

−∞
Φij(k)ei(k2∆y+k3∆z)dk2dk3. (6)

When the two indices i and j are the same and ∆y = ∆z = 0 (6) becomes the
one-point spectrum Fi(k1) = χii(k1, 0, 0). This definition implies that spectra
are two-sided, i.e. we get the variance by integrating from −∞ to ∞. This
convention is used throughout this chapter.

To distinguish between spectra as functions of wave number k1 (= 2πf/U)
and frequency f we use F for the former and S for the latter, i.e. Si(f)df =
Fi(k)dk.

The coherence is defined as

cohij(k1, ∆y, ∆x) =
|χij(k1, ∆y, ∆z)|2

Fi(k1)Fj(k1)
, (7)

which can be interpreted as a normalized cross-spectrum.
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3 Rapid distortion theory

The incompressible Navier-Stokes equation may be written as

Du

Dt
+ u · ∇ U = −1

ρ
∇ p + non-lin. and viscous terms, (8)

where p is the pressure, and D/Dt ≡ ∂/∂t + U · ∇ is the ‘average Lagrangian
derivative.’ Assuming a linear shear (∇ U constant), taking the curl, and
dropping the non-linear and viscous terms we get

Dω

Dt
= Ω · ∇ u + ω · ∇ U , (9)

where Ω and ω are the mean and the fluctuating part of the vorticity. It is not
at all clear that this linearization is permissible. For example, it can be shown
that if the curl of (8) is used to estimate the change in mean square vorticity the
non-linear terms will dominate the linear. However, Hunt and Carruthers (1990)
argue that when used for the calculation of the response of velocity fluctuations
(u or Rij) to a sudden application of a large scale shearing or straining motion
the linearization (9) is valid.

Physically, the last term on the right hand side of (9) may be interpreted as
the stretching of vorticity by the mean shear (see figure 1). The first term is a
distortion of the mean vorticity by velocity fluctuations.

In order to solve (9) we have to Fourier transform the equation. In order to
do so, it is important to notice that wave fronts are advected by the mean flow
i.e.

dk
dt

= −(∇ U )k . (10)

The solution to this wave front advection equation is

k(t) = exp(−∇ U t)k0 (11)

where exp means the matrix exponential.
For a general linear U (9) does not have analytic solution. However, for

many simple situations such as unidirectional shear, non-rotational stretching
or compression, etc. such solutions exists (Townsend 1980).

To get the velocity field from the vorticity we shall express dZ in terms of
dΩ , which is the Fourier transform of ω defined in parallel to (3):

ω = ∇ × u ⇒ dΩ = ik × dZ ⇒ −ik × dΩ = k × (k × dZ ). (12)

Because of the general identity A × (B ×C ) = B(A ·C ) −C (A ·B) and
that k · dZ = 0 we get

−ik × dΩ = −k2dZ ⇒ dZ = i
k × dΩ

k2
. (13)
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Figure 1: Interpretation of the interplay of shear and turbulence: Two differently
oriented eddies are followed over three successive times. Shear stretches (along
the axis of rotation) and speeds up the upper eddy while the lower eddy is
compressed and slowed down.
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We shall re-derive (3.11) in Mann (1994), i.e. set up the equations of motion
for

∇ U =




0 0 0
0 0 0

dU
dz 0 0



 . (14)

In this case

k(t) = exp(−∇ U t)k0 =




1 0 0
0 1 0

−dU
dz t 0 1



 k0, (15)

in accordance with (3.13) of Mann, and Ω = (0, dU/dz, 0). The equations of
motion (9) becomes

Dk × dZ
Dβ

= k2dZ +




dΩ3

0
0



 . (16)

Taking the cross product with k and adding k̇ × (k × dZ ) on both sides we get

−Dk2dZ
Dβ

=
Dk

Dβ
× (k × dZ ) + k × Dk × dZ

Dβ

=
Dk

Dβ
× (k × dZ ) + k2k × dZ +




0
k3

−k2



dΩ3. (17)

Writing this more explicitly we get

Dk2dZ
Dβ

=




(k2

1 − k2
2 − k2

3)dZ3 − 2k1k3dZ1

2k1(k2dZ3 − k3dZ2)
0



 (18)

and using Dk2/Dβ = −2k1k3 from (15) this can be shown to be equivalent to
(3.11) in Mann (1994).

The differential equations (18) are easily solved given the initial conditions
k(0) = k0 = (k1, k2, k30) and dZ (k0, 0). Instead of time, t, we shall use the
non-dimensional time, β, defined as

β =
dU

dz
t. (19)

The solution to (18) is

dZ (k , β) =




1 0 ζ1

0 1 ζ2

0 0 k2
0/k2



dZ (k0, 0), (20)

where
ζ1 =

[
C1 −

k2

k1
C2

]
, ζ2 =

[
k2

k1
C1 + C2

]
(21)
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with
C1 =

βk2
1(k2

0 − 2k2
30 + βk1k30)

k2(k2
1 + k2

2)
(22)

and

C2 =
k2k2

0

(k2
1 + k2

2)
3
2

arctan

[
βk1(k2

1 + k2
2)

1
2

k2
0 − k30k1β

]
. (23)

The equations (15) and (20) give the temporal evolution of individual Fourier
modes.

3.1 RDT and surface layer turbulence

In this section we first discuss the connection between RDT and stationary
surface-layer turbulence, then the key concept of eddy lifetime, and finally we
combine the different parts to obtain the spectral tensor model.

The theory in the previous section describes how turbulence react to a sudden
and fast application of a linear shear. It is natural to ask what this has to do
with turbulence in the surface layer over the ocean.

If the initial conditions can be represented by the isotropic von Kármán
tensor,

Φij(k) =
E(k)
4πk4

(
δijk

2 − kikj

)
, (24)

with the energy spectrum

E(k) = αε
2
3 L

5
3

(Lk)4

(1 + (Lk)2) 17
6

, (25)

then the tensor Φij(k , t) will become more and more ‘anisotropic’ with time.
The linearization implied by RDT is unrealistic, and at some point (in time)

the stretched eddies will break up. We postulate that eddies of linear dimension
≈ |k |−1 (or more precisely the Fourier modes) are stretched by the shear over
a time which is proportional to their lifetime. The lifetime τ is

τ(k) ∝ ε−
1
3 k− 2

3 (26)

pertaining, at least in the inertial subrange, to eddies with wave vector magni-
tude k = |k | (Landau & Lifshitz 1987, § 33).

The basic postulate is that the stationary spectral tensor

Φij(k) ≡ Φij (k , τ(k)) (27)

describes the surface layer turbulence well. The combination of RDT and scale
dependent eddy lifetimes has previously been used by (Derbyshire and Hunt
1993).

Maxey (1982) has described a similar model with the exception that the
lifetime τ was assumed to be constant for all wavevectors. (τdU/dz is called
‘the equilibrium value of the effective distortion strain’ by Maxey.) Maxey’s
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Figure 2: Eddy lifetimes as functions of the magnitude of the wave vector. The
lifetimes given by (28) give the most realistic results.

model gives a reasonable, but not perfect, description of the ratios between
σ2

u, σ2
v , σ2

w and 〈uw〉 for turbulent shear flows. There are, however, two grave
drawbacks when the model of Maxey (1982) is used to calculate spectra:

1. The uw-cross-spectrum in the inertial subrange decays as k
− 5

3
1 whereas

Wyngaard & Coté (1972) observe and give scaling arguments for k
− 7

3
1 .

2. For typical values of the effective distortion strain the model predicts
Fu/Fw ≈ 7 in the inertial subrange whereas it should be Fu/Fw = 3

4 .

The models presented here do not suffer from these shortcomings.

3.2 Eddy lifetimes

At scales larger than the inertial subrange (26) is not necessarily valid. We
construct an alternative model for the ‘eddy lifetime’ assuming that the de-
struction of an eddy with size k−1 is mainly due to eddies comparable to or
smaller than k−1. The characteristic velocity of these eddies may be written
as
(∫∞

k E(p)dp
) 1

2 , and we simply assume the lifetime to be proportional to the
size k−1 divided by this velocity:

τ(k) ∝ k−1

(∫ ∞

k
E(p)dp

)− 1
2

∝ k− 2
3

[
2F1

(
1
3
,
17
6

;
4
3
;−(kL)−2

)]− 1
2

∝
{

k− 2
3 for k → ∞

k−1 for k → 0
(28)
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where we have chosen E as the von Kármán energy spectrum (25) and where
2F1 is the hypergeometric function.

Comte-Bellot and Corrsin (1971) give another lifetime model which has the
right asymptotic behaviour for k → ∞, the ‘coherence-destroying diffusion time’
:

τD(k) ∝ k−2

[∫ ∞

k
p−2E(p)dp

]− 1
2

∝ k− 2
3

[
2F1

(
4
3
,
17
6

;
7
3
;−(kL)−2

)]− 1
2

∝
{

k− 2
3 for k → ∞

k−2 for k → 0 (29)

which was constructed as the square of the eddy size divided by a k-dependent
‘turbulent viscosity’.

Further, the inverse ‘eddy-damping rate’

τE(k) ∝
(
k3E(k)

)− 1
2 ∝

{
k− 2

3 for k → ∞
k− 7

2 for k → 0
(30)

is used by Lesieur (1987) in eddy-damped quasi-normal theories of turbulence
as a characteristic non-linear relaxation time.

All lifetime models are shown in figure 2 normalized such that they coincide
in the inertial subrange. It turns out that σ2

u becomes infinite using (29) or (30),
while (26) and (28) give reasonable results. It also turns out that the spectra
calculated from (28) fit the data better than (26) for which reason (28) is used
in the rest of this chapter. Some support for (28) may be found in Panofsky,
Larko, Lipschutz, Stone, Bradley, Bowen and Højstrup (1982) who measured
eddy ‘response times’ of eddies in the neutral atmospheric surface-layer. Also
Kristensen and Kirkegaard (1987) were in their theoretical model of the growth
of a puff in a turbulent fluid compelled to use (28) rather than (29) or (30).

It is convenient to write (28) as

τ(k) = Γ
(

dU

dz

)−1

(kL)−
2
3

[
2F1

(
1
3
,
17
6

;
4
3
;−(kL)−2

)]− 1
2

, (31)

where Γ is a parameter to be determined. 1

It should be emphasized that at low wave numbers the assumptions made so
far are not valid. F.ex. the assumptions of linear shear is only valid over small
distances, i.e. for large k. Similarly, homogeneity is a dubious assumption for
large vertical separations. Finally, despite talking about eddy lifetimes, there is
no real modelling of the decay process, because there is no equation describing
the non-linear transfer of energy among various wave vectors.

In an attempt to relax the assumption of vertical homogeneity Mann (1994)
modelled the influence of the blocking of the surface in addition to shear. This
gave slightly better coherence predictions than the present model, but greatly
complicated the mathematics and had also other negative consequences.

1Keith Wilson has reformulated this expression in terms of the incomplete beta function.
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3.3 The uniform shear model

To make a stationary model we use (31) and (27) discussed in the beginning of
this section, i.e. we substitute t with τ given by (31). For the 33-component we
get

Φ33(k) = Φiso
33 (k0)

k4
0

k4
=

E(k0)
4πk4

(k2
1 + k2

2), (32)

where Φiso
33 refers to the isotropic von Kármán tensor and E to the energy spec-

trum (25). The other components become

Φ11(k) =
E(k0)
4πk4

0

(
k2
0 − k2

1 − 2k1k30ζ1 + (k2
1 + k2

2)ζ
2
1

)
(33)

Φ22(k) =
E(k0)
4πk4

0

(
k2
0 − k2

2 − 2k2k30ζ2 + (k2
1 + k2

2)ζ
2
2

)
(34)

Φ12(k) =
E(k0)
4πk4

0

(
−k1k2 − k1k30ζ2 − k2k30ζ1 + (k2

1 + k2
2)ζ1ζ2

)
(35)

Φ13(k) =
E(k0)
4πk2

0k
2

(
−k1k30 + (k2

1 + k2
2)ζ1

)
(36)

and
Φ23(k) =

E(k0)
4πk2

0k
2

(
−k2k30 + (k2

1 + k2
2)ζ2

)
. (37)

The equations (32) to (37) with (31) constitute the Uniform Shear model (US).
These equations have two differences from the expressions of Townsend

(1976) for plane shearing of homogeneous turbulence. The first is the elimi-
nation of time by (31) and the second and related difference is that we do not
use the turbulent viscosity of Townsend, which would make the decay time for
all eddies equal, independent of their sizes.

4 Fitting spectra to observations

First the uncertainties on estimated spectra are discussed. Theses are either
caused by variations in atmospheric stability, which persists even at high wind
speeds (> 16 m/s) over water, or by statistical variations. Secondly, the mea-
sured neutral spectra are fitted to the spectral tensor model. Based on this fit
the coherences are finally predicted and compared to the measurements.

4.1 Uncertainties on spectra

Often spectra are averaged over, say, n consecutive frequencies or wave numbers
to decrease the random error of the estimate. Alternatively, the time series could
be divided into n segments of equal duration. Each segment is then Fourier
transformed and the spectrum determined as the average of the absolute square
of these Fourier transforms. For either definition the statistical uncertainty
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on spectral density F calculated from a stationary time series is (under the
assumption that the time series is long compared to the time scale of the process)

σ(F )
〈F 〉 =

1
n

1
2

(38)

(Koopmans 1974, Bendat and Piersol 1986).
Figure 3 shows the result of an analysis of 14 two-hour time series from

the Great Belt. The series have mean speeds U between 16 and 20 m/s and
the mean directions are within a narrow range around south where there is an
uninterrupted fetch over water for at least 20 km.

Assuming the stability to be neutral, the variation of spectral densities
should obey (38) and the standard deviation at the lowest wavenumbers should
be around 25% and 5% at k1 = 0.1 m−1. The observed rms variations are
clearly larger, at least 50% at the lowest frequencies and maybe 20% at higher
frequencies. Most noticeably, there are spectra with only 10% of the spectral
density of the others.

This variation is due to the stability of the atmosphere not being neutral.
The case with suppressed turbulence is slightly stable and has U = 16 m/s.
From the point of view of aerodynamic loads this may imply enhanced loads
on a bridge deck. While the buffeting loads are smaller the loads from vortex
shedding can be much larger. Usually vortex shedding from a bridge deck
is suppressed or even destroyed by the turbulence in the atmosphere, but if
turbulence is absent as in a stably stratified atmosphere (e.g. warm air flowing
out over a cold sea) the vortex shedding might be strong. Stable stratification
might also alter loads on off-shore wind turbines because of increased shear.

Unstable stratification also alters the spectrum. Though none of the spectra
from the Great Belt are obtained under very unstable situations, an analysis
of unstable, high-wind spectra on the west coast of Norway indicate that the
spectra are mainly enhanced (by more than 100%) at very low frequencies (f <
0.02 Hz). These might be relevant for various off-shore production units (Mann
1992).

4.2 Spectral fitting and prediction of coherences

In order to conduct simultaneous measurements of spectra and coherence over
the sea a 70 m high mast was erected 40 m from an existing mast on the easterly
spit of Sprogø, an island in the midst of the Great Belt separating the two
Danish islands Funen and Zealand. A 15 m long horizontal boom was mounted
symmetrically at the top of the new mast so that the whole construction has the
form of a letter “T”. A Kaijo-Denki DAT-300 omni-directional sonic anemometer
was installed at each end of the boom and at the top of the old mast, providing
15.0, 32.5 and 47.5 m horizontal separations between the three co-linear instru-
ments. The mast array is shown in figure 5. More details about the experiment
including correction for flow distortion by the sonic anemometers may be found
in (Mann, Kristensen and Courtney 1991).
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the South. Dashed spectra have slightly unstable stratification, gray have stable,
and the thin have neutral.
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Figure 5: The mast array on Sprogø viewed from SSE. The tiny dots at the top
of the masts are the omni-directional sonic anemometers.
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components. The lines are the coherences predicted by the model.

The measured spectra shown in figure 4 are an average of 16 neutral two hour
runs with wind speeds between 16 and 20 m/s. The smooth curves are model
spectra derived from the spectral tensor model with the parameters Γ = 3.2,
L = 61 m, and αε2/3/U2 = 1.810−4 m−2/3, which are taken from Mann (1994),
who used fewer two hour runs but slightly higher wind speeds.

These parameters are in turn used to predict the coherences as shown in fig-
ure 6. As seen from this figure the predictions agree well with the measurements
except for the w coherence, especially at the largest separation.

5 Model spectra over the ocean and flat land

Here we compare the tensor model of section 3.1 to spectra and coherences from
the literature. We will not give an exhaustive review of spectral models but se-
lect a few modern models which the author believes is used in wind engineering.
The purpose is to estimate the parameters Γ , L and αε2/3 for a given mean
wind speed U and height above the water surface z.

The logarithmic mean wind profile defines the roughness length:

U(z) =
u∗

κ
ln(z/z0), (39)

where u∗ ≡ (−〈uw〉)1/2
z→0 is the friction velocity and κ = 0.40 the von Kármán

constant (Landau and Lifshitz 1987, Panofsky and Dutton 1984).
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Figure 7: The neutral drag coefficient CDN as a function of mean wind speed
at z = 10 m. The broad line is from Charnock’s relation (41) and (39). The
thin lines are empirical relations from (Geernaert 1987) and the dotted line is
from NDP (1998), see (50).

ESDU International (1982) gives a slightly more accurate wind profile:

U(z) =
u∗

κ
(ln(z/z0) + 34.5fz/u∗) (40)

with the Coriolis parameter f ≡ 2Ω sinφ, where Ω is the angular velocity in
rad s−1 of the Earth and φ the geographical latitude. The profile (40) is valid
up to z = 300 m, below 30 m (39) is a good approximation to (40). Throughout
this comparison we use f = 10−4 s−1.

Charnock (1955) argued that over the sea the roughness length is related to
g = 9.8 ms−2 the acceleration due to gravity and the friction velocity by

z0 = A
u2
∗
g

(41)

where A, the Charnock constant, must be determined experimentally. On basis
of an extensive literature study of ocean data Garratt (1977) found that the best
fit of (41) is A = 0.0144. A slightly newer value is given by ESDU International
(1982):

A = 0.0167, (42)

which will be used here. Over the ocean the neutral drag coefficient

CDN =
(

u∗

U(10 m)

)2

(43)

increases monotonicly with U as can be seen by solving (41) and (39). This is
shown in figure 7 as a broad line together with several recent empirical relations.
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The figure gives a good impression of the uncertainty in estimates of drag coeffi-
cients. Among the various reasons for this variability are atmospheric stability,
surface currents, ‘wave age’, length of the fetch over water, and water depth
(Garratt 1977, Geernaert 1987, Brown and Swail 1991). The spectral density
of velocity fluctuations is in general proportional to the drag coefficient so the
uncertainty of the former is probably of the same order of the latter.

5.1 Code and textbook spectra

Surface layer scaling is used in many spectral models, implying that length scales
are proportional to z and that variances are proportional to u2

∗. Therefore, it
is convenient to normalize the spectra with u2

∗ and present them as functions
of either n ≡ fz/U or k1z. All spectra in this paper are ‘two-sided’ implying∫ −∞
∞ S(f)df is equal to the variance2.

The spectra of Kaimal are (Kaimal, Wyngaard, Izumi and Coté 1972, Kaimal
and Finnigan 1994)

fSu(f)
u2
∗

=
k1Fu(k1)

u2
∗

=
52.5n

(1 + 33n)5/3
, (44)

fSv(f)
u2
∗

=
8.5n

(1 + 9.5n)5/3
, (45)

and
fSw(f)

u2
∗

=
1.05n

1 + 5.3n5/3
. (46)

Kaimal’s spectra are based on measurements over flat homogeneous terrain in
Kansas.

The spectra of Simiu and Scanlan (1996) have the same functional shapes
as Kaimal’s but the numerical constants are different:

fSu(f)
u2
∗

=
100n

(1 + 50n)5/3
, (47)

fSv(f)
u2
∗

=
7.5n

(1 + 9.5n)5/3
, (48)

and
fSw(f)

u2
∗

=
1.68n

1 + 10n5/3
. (49)

Deviations from surface layer scaling are found in the model spectra from
ESDU International (1985). Also the spectra of Norwegian Petroleum Direc-
torate (NDP 1998) and Højstrup, Larsen and Madsen (1990) do not obey surface
layer scaling, but they are only limited to u-spectra.

2The so-called ‘one-sided’ spectra, where
∫∞
0

S(f)df is equal to the variance, are probably
more commonly used.
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Figure 8: Comparison of spectral models. For the comparison z = 40 m and
U = 40 m/s (over the sea) is chosen. For u ESDU International (1985), (44),
(47), (57), (53) are used. For v and w ESDU International (1985), (45) and (48),
and ESDU International (1985), (46) and (49), respectively. Eq. (40) together
with (41) gives u∗ = 1.78 m/s and z0 = 0.0054 m.
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Figure 9: The ‘sheared spectral tensor’ of section 3.1 (curves with dots) fitted
to the models by Simiu and Scanlan (47) – (49). The result is given by (60).

The Engineering Science Data Unit (ESDU) wind profile, spectra and cohe-
rences (ESDU International, 1982, 1985 and 1986) are derived from many
sources from all over the world during several decades. ESDU proposes that
the turbulence intensities and length scales in the surface layer are dependent
on mean wind speed. The argument is that the boundary layer depth increases
with increasing wind speed implying larger scales of the turbulence. The other
models, relying on surface layer scaling do not contain any information on the
boundary layer depth and they contain no explicit reference to the mean wind
speed. The equations of ESDU are, compared to all other spectral models dis-
cussed here, by far the most complicated. Therefore we shall not cite them
explicitly. The most important input parameters are, as for the other spec-
tral models, the height above the surface z, and the mean wind speed at some
height. Of less important input is the Coriolis parameter which, as mentioned
previously, is taken to be f = 10−4 s−1. The models we use are valid for the
neutral atmosphere.

The u-spectrum of NDP (1998) applies to winds over oceans and assumes
the drag coefficient to be

CDN = 0.525 × 10−3(1 + 0.15U10), (50)

see figure 7. Integrating dU/dz = u∗/(κz) =
√

CDNU10/(κz) (50) implies that

U(z) = U10

(
1 + C ln

z

10 m

)
(51)

with
C = 0.0573(1 + 0.15U10)1/2 (52)
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where U10 has to be measured in meters per second. While discussing the NPD
spectrum we also assume the unit of z to be meter, f is Hz and Su is m2s−2Hz−1.
The spectral density of the longitudinal wind component is

Su(f) =
160

(
U10

10

)2 ( z

10

)0.45

(
1 + f̃n

) 5
3n

(53)

with

f̃ = 172f
( z

10

)2/3
(

U10

10

)−3/4

(54)

and n = 0.468. This spectrum implies that the variance

σ2
u = 0.00309

U2.75
10

z0.217
(55)

will decrease with height and not constant as implied by surface layer scaling.
Furthermore, the integral length scale

length scale ∝ z2/3U1/4
10 (56)

will not be proportional with height but will grow somewhat slower and it will
also increase a little with wind speed. This is not consistent with surface layer
scaling where it under neutral conditions is constant with wind speed.

Højstrup et al. (1990) suggested that spectra at low frequencies do not obey
surface layer scaling because the low frequency part scales with the height of
the boundary layer, not z. To verify their model they used data selected for
neutrality and high wind speeds (11 < U < 23 ms−1) from both over sea and
land sites in Denmark. The u-model is3

fSu(f)
u2
∗

=

(
2.5nt

1 + 2.2n5/3
t

+
52.5n

(1 + 33n)5/3

)
1

1 + 7.4(z/A)2/3
(57)

where the ‘neutral length scale’ A = 3000 m and nt = fA/U . The second term
in the parenthesis is the Kaimal spectrum (44).

All spectral model are compared in figure 8 for a specific choice of U and
z. Generally, ESDU has larger length scales compared to those by Kaimal and
by Simiu & Scanlan, which are similar. NPD and Højstrup support ESDU’s
large u-scale. ESDU, though, has the most peaked spectra and, at high wave
numbers, slightly lower spectral densities. All spectra agree fairly well at high
wave numbers but have substantial scatter at low wave numbers.

5.2 Comparison with the spectral tensor model

Here we fit the spectral tensor of section 3.1 to models that describe all three
component spectra, namely the ones by Kaimal, Simiu & Scanlan and ESDU.

3Højstrup, Larsen and Madsen (1990) also gives a model for the v spectrum, but it was
never compared with data, so it will not be discussed here.
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Figure 10: Example with z = 40 m and U = 40 m/s of the fit of the spectral
tensor model (curves with dots) to the ESDU models.

We obtain the parameters Γ , L and αε2/3 by making a simultaneous least
squares fit to the u-, v- and w-model spectra for wave numbers in the range
0.05 < k1L < 100. For the Kaimal spectra we get

Γ = 3.9
L = 0.59z (58)

αε2/3 = 3.2
u2
∗

z2/3
,

where the dependence on z is a consequence of surface layer scaling. For the
Simiu & Scanlan spectra, where the fir is shown in figure 9, we get

Γ = 3.8
L = 0.79z (59)

αε2/3 = 2.8
u2
∗

z2/3

and for both models u∗ can be obtained from figure 7.
It is more complicated to get the parameters from the ESDU models because

the spectra no longer depend on U and z in a simple way. For each set {U, z},
a fit to the tensor model has to be calculated. We do that on a mesh limited
by 10 < U < 80 m/s, 5 < z < 300 m over the sea. The result is shown in
figure 11. As an example of use of these graphs, suppose that the parameters
for U(z = 80 m) = 20 m/s are wanted. From the upper plot of figure 11 we get
L = 33 m and αε2/3 = 0.1 m4/3s−2. The lower plot gives Γ = 4.5.
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Figure 11: The parameters of the spectral tensor model derived from fits to
the ESDU model spectra for turbulence over the sea. Given U and z, all three
parameters can be extracted from these plots.
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Table 1: Parameters of the spectral tensor derived from different sources for
U(40 m) = 40 m/s at sea.

Γ L [m] αε2/3 [m4/3s−2]
Great Belt 3.2 35 0.79
Kaimal 3.9 24 0.86
Simiu 3.8 31 0.76
ESDU 4.5 66 0.62

Another example is shown in table 1 where the Great Belt data from (Mann
1994) are extrapolated using neutral surface layer scaling to U(40 m) = 40 m/s.
The spectral fit for these values of U and z is shown in figure 10.

Literature coherences and coherences derived from the spectral tensor by (6)
and (7) are compared in Mann (1998). Generally, the agreement is good.

6 Wind field simulation

Having discussed the spectral tensor in relation to commonly used literature
spectra we now describe how to simulate a velocity field u(x ), which can be
used for calculating loads on engineering structures.

We approximate the integral (3) by a discrete Fourier series:

ui(x ) =
∑

k

eik ·xCij(k)nj(k), (60)

where the l’th component of x is xl = n∆Ll with n = 1, ..., Nl. The symbol
∑

k
denotes the sum over all wave vectors k with components ki = m2π/Li, with
the integer m = −Ni/2, ..., Ni/2, nj(k) are independent Gaussian stochastic
complex variables with unit variance and Cij(k) are coefficients to be deter-
mined. The great advantage of (60) is that, once the coefficients are known, it
can be evaluated very fast by the fast Fourier transform (FFT) (Shinozuka and
Deodatis 1991).

Solving (60) we get (approximately, see Mann 1998)

Cij(k)nj(k) =
1

V (B)

∫

B
ui(x )e−ik ·xdx , (61)

where V (B) = L1L2L3 is the volume of B and
∫

B dx means integration over
the box B. From (61) it is easy to see that nj(k) have to be Gaussian when
ui(x ) is a Gaussian field. Many authors relax this constraint and let nj(k) have
random phase but a fixed absolute value (Shinozuka and Jan 1972, Shinozuka
and Deodatis 1991, Shinozuka and Deodatis 1996). Using this approach every
sample will get exactly the same variance and, given a wavenumber (or vector),
the estimated power spectral density at this wavenumber will be the same for all
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realizations of the same process. This might be advantageous in some situations,
but it is in contrast to power spectral density estimates of stationary time series
which have 100% rms (Press, Flannery, Teukolsky and Vetterling 1992, Bendat
and Piersol 1986). The difference between the two approaches is discussed in
detail in (Grigoriu 1993). In practice there is little difference and both models
could be used. However, the Gaussian approach is usually easier to analyze
theoretically and we shall stick to that here.

To find the coefficients Cij(k) we calculate the covariance tensor of (61)
obtaining

C∗
ik(k)Cjk(k)

=
1

V 2(B)

∫

B

∫

B
〈ui(x )uj(x ′)〉 eik ·x e−ik ·x ′

dxdx ′ (62)

=
1

V 2(B)

∫ ∫
Rij(x − x ′)1B(x )1B(x ′)eik ·(x−x ′)dxdx ′,

where 1B(x ) = 1 if x ∈ B and 0 otherwise. Using the change of variables
r = x − x ′ and s = x + x ′ having the Jacobian |∂(r , s)/∂(x ,x ′)| = 8 we get

Cik(k)Ckj(k) =
1

8V 2(B)

∫
Rij(r)e−ik ·r

∫
1B

(
s + r

2

)
1B

(
s − r

2

)
dsdr

(63)
The inner integration can be carried out according to

∫
1B

(
s + r

2

)
1B

(
s − r

2

)
ds =






3∏

l=1

2(Ll − |rl|) for |rl| < Ll for all l

0 otherwise
(64)

so, using the convolution theorem and noting that the Fourier transform of
L − |r| (for |r| < L and else 0) is L2 sinc2(kL/2), we get

C∗
ik(k)Cjk(k) =

∫
Φij(k ′)

3∏

l=1

sinc2

(
(kl − k′

l)Ll

2

)
dk ′, (65)

where sincx ≡ (sin x)/x. For Ll - L, the sinc2-function is ‘delta-function-like’,
in the sense that it vanishes away from kl much faster than any change in Φij ,
and the area beneath the sinc2-curve is 2π/Ll. Therefore, we get

C∗
ik(k)Cjk(k) =

(2π)3

V (B)
Φij(k). (66)

The solution to (66) is

Cij(k) =
(2π)3/2

V (B)1/2
Aij(k) = (∆k1∆k2∆k3)

1/2 Aij(k) (67)

with A∗
ikAjk = Φij and ∆kl = 2π/Ll. This result should be expected when

comparing (3) to (60).
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Two problems occur by simulating a field by the Fourier series (60) with the
coefficients (67). The first is that for many applications the dimensions of the
simulated box of turbulence need not to be much larger than the length scale
of the turbulence model L. Therefore (66) may not be a good approximation
to (65). The second problem is that the simulated velocity field (60) is periodic
in all three directions. Both problems have been addressed in Mann (1998).

The algorithms above simulate a three-dimensional vector field on a three-
dimensional domain, but it can easily be modified to simulate one- or two-
dimensional vectors in a 2- or 3-D domain (see Mann 1998). The algorithms are
not needed for a one-dimensional domain, i.e. simulation of wind fluctuations
in one point as a function of time.

The implementation of the model includes three steps:

1. Evaluate the coefficients Cij(k), either by (67) or a modification of this
(see Mann 1998).

2. Simulate the Gaussian variable nj(k) and multiply.

3. Calculate ui(x ) from (60) by FFT.

The time consumption in the first step is proportional to the total number of
points N = N1N2N3 in the simulation. The required time to perform the FFT
is O(N log2 N) (Press et al. 1992).

In practice, simulating a three-dimensional field, used for load calculations
on wind turbines, with millions of velocity vectors takes of the order of a few
minutes on a modern pc.
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